TEXAS II\ISTRU/\/\ENTS

F'I'WAR

TI-74 Learn Pascal User’s Guide

This book was developed and writtenby:
Nancy Bain Barnett
With contributions by:

Robert G. Harr
GlenThornton

Scott Thomson

Bill Petersen

Gary Von Berg

Chris Alley
Rosemary DeYoung
Robert E, Whitsitt, I

Copyright © 1985, Texas Instruments Incorporated Allrights resers

Table of Contents

Chapter 1 —PascalontheTI-74 7
Introduction, ... 7
UsingthisManual 7
Chapter2—GettingStarted 9
Installingor ReplacingaCartridge. 9
Initializing the PascalSystem 10
The Key-referenceCard. 10
LeavingthePascalSystem 10
Writing, Running, and Listing a Pascal Program il
Editing Program Lines0. 12
Program Storageand Execution 15
SavingaProgram......... 15
ExecutingaStoredProgram 15
Review e i6
Chapter 3—Computer Programming 17
Introduction 17
PascallLanguage e 17
ProgramFormat0 ..t 18
ProgramHeading 18
ProgramBlock 19
PascalSyntax oo 20
Identifiers i 20
COonStantS i e e e 21
Reserved8Symbols 21
ProgrambLines. 0. 22
LineNumbering. 22
Renumbering Program Lines 23
Indentation 23
LineLength i 24
Punctuation. 24
Multiple-Statement Lines 24
Statementson MultipleLines 24
COMIMENES . . ottt e e 25
InterpreterOptions 25
QutputStatements 27
The WRITELN Statement 28
The WRITE Statement 28
Terminating Program Execution 29
The Reserved Word END 29
The HALT Statement 30
The EXITStatement 30
Using Statements without LineNumbers 30
ErrorHandling 30
DebuggingaProgram 32
ReviewW e e 33

Table of Contents i
Chapter4—Expressions........................... 3 '
Introduction 33
Constant Declarations 3
Variable Declarations............... e 37

INTEGERTYDE ...\ 38
REALTYDE ..o o 39
CHARTYpE ... oo 4@
STRINGTYDPE . . i o oo e 4d
BOOLEANTYpe. . .. oo 42
Setting the Valuesof Variables 42
Assignment Statements 4ﬂ
Input Statements. 44
The READLN Statement 47
The READStatement 47
Using PromptsforInput. 49
Operators i 50
INTEGER DataOperators 50
ArithmeticOperators. Sd
RelationalOperators 5
LogicalOperators Sg
REALDataOperators 53
ArithmeticOperators. 53
RelationalOperators 54
LogicalOperators 5
Character DataOperators 55
RelationalOperators 55
LogicalOperators 561
STRING DataOperators 56!
Relational Operators 56
LogicalOperators 57
BOOLEAN DataOperators 57|
RelationalOperators 57
LogicalOperators 58,
Operator Precedence 60
Forming Expressions 62
Functions 63
IntegerFunctions 64
Numeric 64!
Memory. ... 65
String ... 68;
Ranking................. . .. i 69
RealFunctions. 69
CharacterFunction............................ 71
String Functions, 72!
BooleanFunctions, 73
Multi-Type Functions 73
TYPE Declarations 74

Table of Contents

DataTypeFormats.ttt iean. 74
UnformattedData 74
FormattedData 76

PositioningtheCursor 78

Review e 79

Chapter5—FlowofControl 82

Introduction 82

RepetitionStatements 82
TheFORStatement 83
The REPEAT Statement 86
The WHILE Statement 87
NestedLoops 89

Conditional Branch Statements 91
ThelFStatement a1
Nested IF Statements 93
The CASEStatement. 97

Unconditional Branch Statements 100
The GOTOStatement 100
LABELDeclarations 100

Review e 101

Chapter 6—ATTays ot 103

Introduction 103

Declaringan ArrayType o, 107

Random Access to a One-Dimensional Array 108

Two-Dimensional Arrays 109

Accessing the Elements in a Two-Dimensional Array ... 110

Three-Dimensional Arrays. 112

Arraysof Characters 113

Packed Arrays 115

Review e e 120

Chapter 7—Procedures and Functions 121

Introduction 121
Procedure Declarations 122
FunctionDeclarations. 1256

Endinga ProcedureorFunction 1286

Parameters e 129

Globaland Localldentifiers. 131

PassingInformation 132
One-WayTransfer 133
Two-WayTransfer, 133

User-DefinedFunctions 133

User-Defined Procedures. 135

ArrayParameters. L 138

The FORWARD Declaration. 143

Table of Contents K

Intrinsic Procedures. oo 144;
StringProcedures 144
ArrayProcedures 146

Recursion 147

Review 150

Chapter8—FileHandling 152

Introduction 152

DataFormat 153

DataRecords. 153

FileOrganization 153

Initializing 2 Mass-Storage Medium 153

DeletingaFile. 154

File-ProcessingKeywords 154
FieDeclaration 154
Openingand ClosingaFile 154

The RESET Procedure 154
The REWRITE Procedure 155
The CLOSE Procedure 156
FileInputandQutput 156
The EOLNand EOFFunctions 156
File Input with READand READLN 157

The PAGE Procedure 160

OStatus e 160

Review 161

AnswerKey 163

Index 175

Chapter 1—Pascal on the TI-74

Introduction

Using this Manual

The TI-74 Learn Pascal User’s Guide was written to help you
learn to write Pascal programs on the TI-74. The TI-74 Learn
Puscal Reference Guide contains the features of TI-74 Pascal
in alphabetical order followed by appendices that contain
reserved words, error messages, and other reference material
for use once you are familiar with Pascal.

Pascal is a programming language that was defined by Niklaus
Wirthin the late sixties. In comparison to other programming
languages such as BASIC, FORTRAN, or COBOL, Pascalis
characterized by a highly disciplined, relatively formal
syntax and structure. Thus, Pascal offers many advantages
over other less-structured programming languages, such as
an easily understood syntax, implicit error-checking, and
program modularity. Asarule, programs written in Pascal
can be easily moved from one computer to another.

The original definition of Pascal by Nicklaus Wirth is now
known as standard Pascal. Newer versions of Pascal have
been released that contain additions to the original
definition. These versions often incorporate advanced
featuresinto standard Pascal. One of the most widely-used
versions, UCSD Pascal, was developed for use on time-
sharing systems and small computers. UCSD Pascalisa
trademark of the Board of Regents of the University of
California at San Diego. The version of Pascalimplemented
forthe T1-74 is a subset of UCSD Pascal.

The Pascal Solid State Software™ cartridge is a learning aid
that was designed to help you learn the Pascal programming
language and to write Pascal programs in a very short time.
This learning aid provides a fast, easy, and economical
method of learning Pascal.

This chapterisan introduction to the Pascal programming
language for use with the Texas Instruments T[-74.

The lexical standards and syntactic conventions of the
version of Pascal used with the TI-74 are discussed in the
remaining chapters. At the end of each chapter are review
questions. You can check your answersin the Answer Key,
located after chapter 8.

Chapter 2 provides information on installing the Solid State
Software™ cartridge, using the Pascal key-reference card
provided with the cartridge, writing and executinga
program, editing lines, and saving programs.

Chapter 1—Pascal onthe TI-74

Chapter 3 provides an overview of a Pascal program and the
rules for writing program lines,

Chapter 4 provides information on constructing expressions
for use as program statements.

Chapter 5 is a discussion of statements that control the flow
of a program.

Chapter 6 contains information on arrays.
Chapter 7 describes procedures and functions,
Chapter 8 describes the process of using files.

This manual was designed to enable you to begin writing
Pascal programs immediately, evenif you have never
programmed or used Pascal before. You should, however, be
familiar with the TI-74 User’s Guide.

The most effective way to learn a programming language is t.
use it. You can learn Pascal on the TI-74 more quickly if you
try the examples in this manual, complete the review
questions at the ends of chapters 2 through 8, and then
experiment with any programs you write. You cannot
damage your computer by entering instructions. Any
operation can be cancelled by pressing the BREAK and CLR
keysorthe RESET key.

Chapter 2—Getting Started

Caring for
the Cartridge

Installinga
Cartridge

Handle the cartridge with the same care you would give any
other piece of electronic equipment. You should:

» Avoid static electricity. Prior to handling the cartridge,
touch a metal object to discharge any static electricity.

» Store the cartridge inits original container or inthe
cartridge port, on the upper right side of the TI-74.

The TI-74 isshipped with a port protector in the cartridge
port. The port protector resembles a cartridge and is installed
and removed in the same way.

1. Make sure the TI-74 is turned off . Installing a cartridge
while the TI-74 is on may result in memory loss.

2. If the port protector or a cartridge is currently in the port,
remove it by placing your thumb on the ridged areaontop
of the cartridge and sliding the cartridge to the right. Store
the removed cartridge in its container,

3. Turn the Pascal cartridge so that the ridges are facing
upward.)

4. Insert the cartridge into the port, small end first.

5. Slide the cartridge to the left until it snaps into place.

You should keep a cartridge or the port protector in the port
at all times to prevent the accumulation of dust.

Chapter 2—Getting Started

Initializing the
Pascal System

The Overlay

Leaving the
Pascal System

10

i

t
After the Pascal cartridge is installed, turn the console on by l
pressing the ON key. If a message is displayed, press the CLR |
or ENTER key to clear the display. When the flashing cursor |
appears, make sure the computer is in BASIC mode, then typ¢
run ‘‘pascal’’ and press the ENTER key. :

The computer then determines if a non-Pascal programisin
memory. If there is such a program, the message Erase
program (y/n)?isdisplayed. If you pressn, the computer
leaves the program in memory and returns to the BASIC
command level. If you pressy, the program in memory is
erased and the message Pascal System Initializedis
then displayed, informing you that the Pascal system is in
command. Press the CLR or ENTER key to clear the message :
from the display and the cursor appears in column 1.

If no program isin memory or if a Pascal program is there, thel
message Pascal System Initializedisdisplayed after
run ‘‘pascal’’ is entered.

{
The overlay provided with your Pascal cartridge fits over the!
keyboard to show the Pascal keywords that can be entered
into the display with the FN key. To access a keyword, press :
the FN key and then the key under the keyword. Usingthe
FN key cansave you many keystrokes.

In addition to the symbols marked on the keyboard and
overlay, the TI-74 has characters you access after pressing

CTL. The TI-74 User’s Guide describes the control keyboard.;f

You can leave the Pascal system and return to the BASIC
command level by entering the reserved word BYE. The
BASIC command level is then automatically initialized and
you can begin entering instructionsin BASIC. Any Pascal
program is erased from memory.

|
1
Note also that when the computer is reset or turned off by ¢
either the OFF key or the Automatic Power Down™ feature, |
the Pascal system is exited. When the computer isturned |
back on, the BASIC system is in command. You must enter |
run ‘‘pascal’’ toreturn to the Pascal system. Any Pascal '
program lines that were stored in memory remain there ;
unless you have erased the computer memory with a NEW or}
NEW ALLcommand. Thus, after you have cleared the
message Pascal System Initializedbypressingeither |
the CLR or ENTER key, you can use the Pascal programin '
memory.

——i oo

Chapter 2—Getting Started

Writing, Running,
and Listing
aPascal Program

To enter a new program, you must first erase the memory by
entering either NEW or NEW ALL.

If the Pascal system was running before the computer was
turned off and you turn the computer on to program in
BASIC, you must first initialize the BASIC system by entering
the NEW ALL command,

Enterthe following program in your TI-74 exactly as it
appears below. (Don’t forget the period after END.)

100 PROGRAM example;

110 BEGIN

120 WRITELN('writeln is an output statement’};
130 END.

To execute or run the program, press the RUN key (or type
the word rur) and then press the ENTER key. The message
writeln is an output statement isdisplayed. Pressthe
CLR key to clear the display.

You can see that the program lines have been stored in
memory by typing the word LIST and pressing the ENTER
key, The single line

100 PROGRAM example;

isdisplayed. The number 100 is the line number of the first
line of the program. Each line of a TI-74 Pascal program raust
have a line number from 1 through 32766 followed by a space
and at least one nonblank character.

Press the ENTER key to see each successive program line.
When no more lines are displayed, LIST has displayed all of
the lines in memory.

You can also use the tand } keys to view the stored lines.

Pressing t displays each program line in descending order;
pressing + displays the lines in ascending order.

11

Chapter 2—Getting Started

Editing Program
Lines

12

Program lines are stored in numerical order, regardless of the;
order in which they are entered. For example, enter the
following lines in your TI-74.

119 WRITELN(first statement displayed’);
125 WRITELN(third statement displayed’');

You can list the program (or use the t and d keys)to see that
the additional program lines are stored in memory in
numerical order.

Torun the program, clear the display and enter the RUN
command, The line

first statement displayed

isdisplayed. Press the ENTER key to see the next line.
writeln is an output statement

Press the ENTER key to see the next line.

third statement displayed

After thisstatement is displayed, pressthe CLR or ENTER
key to clear the display. Press the ¢ key until the line

120 WRITELN('writeln is an output statement');

isdisplayed. Note that the characterswriteln is an
output statement areenclosedinapostrophesand
parentheses. Characters enclosed in apostrophes are calleda
character string and are displayed exactly as they appear
between the apostrophes.

The parentheses are used to enclose all of the items that the
WRITELN is to display. For example, another character strin*
canbe displayed by this WRITELN by using the edit keysto
insert another character stringintoc line 120 as described in
the next section.

After you have used the + key to display line 120, press the -
key until the cursor is positioned over the closing parenthesisﬂ
Press the SHIFT - keys and then enter the following. (Don't §
forget the comma.)

1

," 2nd character string’

Chapter 2—Getting Started

When line 120 contains the following

120 WRITELN('writeln is an output statement',
" 2nd character string’);

press the ENTER key to enter the line, The WRITELN in line
120 now hastwo character strings to display. Torun the
program, press the RUN and ENTER keys.

Afterthe first line is displayed, pressthe ENTER key to view
the next line. Note that the -» indicator in the display is
turned on as a signal that characters are insome columns to
theright of column 31. Press CTL -» to shift the charactersso
that column 25 is positioned in the first column of the display.
Youcanthen view the second string, 2nd character
string. ’

Press CTL = or CTL 1 to shift the displayed characters so that
the first character of the line is in column 1 of the display.
Press the ENTER key to see the last displayed line and then
CLR to clear the display.

You can also display numbers in addition to character strings.
Numbers do not have to be enclosed in apostrophes. To
display the numbers 10, 345, and 867.5309 in the program,
change the program lines by using the edit kevs asshown
below.

Pressthetor i key untilline 119isdisplayed, Press —+ until
the cursor is over the first apostrophe. Then type 10. Press
the SHIFT + keys until the characters through the next
apostrophe are deleted. When line 119 contains the following

119 WRITELN(1IO);

press the ¥ key to enter the line and to display line 120, Press
- until the cursor is over the first apostrophe and type 345);.
Press CTL 4 to clear all characters to the right of the cursor
and the following line is then displayed.

120 WRITELN(345);

Press to enter the line and to display the next line. Then
change line 125 to the following.

125 WRITELN(867.5309);

13

Chapter 2-—-Getting Started

14

List the program {or use the t or { keys) to see that your
program contains the following lines.

100 PROGRAM example;
110 BEGIN

119 WRITELN(10);

120 WRITELN(345);

125 WRITELN(867.5309) ;
130 END.

After you enter the RUN command, the number 10 is
displayed. Press the ENTER key to view the next number,
345, Then press the ENTER key to view the last number,
867 .5309.

Suppose you now want to delete lines 119 and 125 from the
program. Press CLR to clear the display and type DEL (or
press FN <) and the line numbers as shown below.

DEL 119,125

Press ENTER and then LIST the program to see that lines 1 19
and 125 have been deleted. Your program should now
contain the lines shown below.

100 PROGRAM example;
110 BEGIN

120 WRITELN(345) ;
130 END. i

Note that you can use the DEL command with any of the
following specifications.

Command Result

DEL 100 Deletes line 100.

DEL 100,110,130 Deleteslines 100, 110, and 130.

DEL 100 - Deletes line 100 and all following lines.
DEL - 100 Deletesline 100 and all preceding lines
DEL 100 - 110, Deletes lines 100 through 110 and lines
120 - 130 120 through 130.

Chapter 2—Getting Started

Program Storage
and Execution

Saving a Program

Executinga.
Stored Program

If you want to delete all of the lines in memory, type NEW or
NEW ALL and press ENTER. When you list the program (or
use the t or + keys), no program lines are displayed.

You cansave a program that you want to keep by using the
SAVE command. To execute a program that has been stored,
use the OLD command and the RUN command.

The SAVE command is used to copy a program in memory to
an external storage device. To store a program on a new
medium, you must first format the medium. Note that if you
format a medium that has data on it, you lose the data. For
information on formatting, refer to the manual supplied with
the peripheral device you are using.

The command
SAVE 'l.myprog’

writes the program in memory to the mediumondevice 1,
The program issaved under the filename “'myprog.”’
Warning: When you save a program on a medium that
contains other programs, be sure to give the program in
memory a name that does not already exist for a programon
the medium. Otherwise, the program on the medium is
deleted before the program in memory is written to the
medium,

You can also protect a program when you save it, by using
PROTECTED in the SAVE command. The program in memory
remains unprotected, but the saved copy cannot be listed,
edited, or stored. For example, the following SAVE command
places a protected copy of the program in memory on an
external device,

SAVE’L.myprog’ ,PROTECTED

Note: Because a protected program can never be listed,
edited, orstored, be sure to save an unprotected copy.

Toexecute a program stored on a peripheral device, the
program must be loaded into memory by using the OLD or the
RUN command. The QLD command is used when you want to
load the program into memory. You can then verify that the
program was loaded correctly, edit the program, or list the
program before you run it. The statements shown on the next
page illustrate loading a program into memory and verifying
that it was loaded correctly.

15

Chapter 2—Getting Started

Review
Chapter 2

16

OLD’1.myprog’
VERIFY '1.myprog’

To execute the program, enter RUN.

The RUN command can be used to retrieve and execute a
program stored on a peripheral device. The coramand below
loads a program intec memory from a peripheral device and
then executesit.

RUN’1l.myprog’

1.

10.

After you install the Pascal cartridge, you must enter
what command before you can begin to program in
Pascal?

You leave the Pascal systera when the computer is turned
off or when you enter what command?

Inthe program line
120 WRITELN('writeln is an output statement’);

the number 120 is called the

‘writeln is an output statement’ isknownasa

Character strings must be enclosed in
What is missing in the following program?
100 PROGRAM example;

110 BEGIN v
120 WRITELN('writeln is an output statement’);
130 END

To delete aline from a program, you would use the

command.
Tosave a program, youcanusethe ___ command.
What is wrong with the following command? ‘
SAVE “*1.myprog”’

Write the command that loads a program called
‘myprog’’ located on the medium in device 7.

Chapter 3—Computer Programming

Introduction

Pascal Language

Programming languages such as FORTRAN, PL/1, BASIC, and
Pascal are called high-level languages. These languages must
use a compiler or interpreter to translate the language into
one the computer can use, The Pascal available with the
T1-74 uses an interpreter rather than a compiler to translate
instructions into the machine language. When you enteran
instruction, the interpreter scans it for syntax errors. If no
syntax errors are found, the instruction is translated into the
internal machine form and stored in memory. If asyntax
error isdetected, a message is displayed to inform you of the
errorso that you can correct the line and reenter it.

A Pascal system that uses a compiler requires that the entire
program be written before any line is translated. Noerrors
are detected until the entire program is entered to be
compiled. If any errors are detected by the compiler, they
must be corrected and the entire program must be compiled
again to determine if other errors are present. Afterthe
program is compiled, it is stored to a file. The program can be
executed after it is loaded into memory.

Because it uses an interpreter, TI-74 Pascalis easy to learn
and use, After all the instructionsin a program are entered,
translated, and stored in memory, you can have the computer
perform or execute the stored program with a single
command.

To solve a problem effectively with a computer, you must be
able to reduce the solution of the problem to asequence of
steps that is both definite (always produces the same results)
and finite (must end eventually). Such a sequence of steps is
called an algorithm. Once you have developed the algorithm
for solving a problem, you must translate the algorithm into a
language the computer understands.

Pascal facilitates the conversion of algorithms into computer
programs. First, the algorithm or sequence of steps is written
in a general outline form. Then, the outline is broken down
into a number of simpler programming tasks that are
independent of each other, This stepwise refinement, called
top-down design, resultsin Pascal programs that are
organized as blocks of programming tasks. Top-down design
produces programs that are organized, or “structured,”’ inan
easily understood manner.

17

Chapter 3—Computer Programming

Program Format

18

In this manual, the elements of Pascal are grouped into five
classes.

¢ Statements instructions for the computer to perform

¢ Declarations definitions of names

s Input the information the program processes

e Qutput the results

« Commands instructionstothe computer that cannot be
performed in a program

A Pascal program is made up of statements and declarations.
A typical program processes the data (input) entered from th
keyboard or a storage medium. The information produced by,
the program is known as output.

Every Pascal program must contain two parts: a program
heading and a program block. The illustration below shows
the two major parts of a Pascal program. |

-

program heading PROGRAM identifier;

declarations

program block BEGIN

program body

END.

Major Parts of a Pascal Program i

Program Heading
The first line in a program must be a program heading. Inthe
example,

100 PROGRAM example;

110 BEGIN

120 WRITELN('writeln is an output statement’);
130 END.

line 100 contains the program heading, PROGRAM example;
A program heading assigns a program name to all the lines
that follow it.

Chapter 3—Computer Programming

Program Block

The program block consists of statements and declarations. A
program block must have a program body. Declarations are
optional, but if they are used, they must precede the program
body.

The program body consists of the reserved word BEGIN
followed by the statements that are to be executed and the
reserved word END.

Theline
120 WRITELN('writeln is an output statement');

isthe only statement in the previous program that is
performed. Note that a program body can contain no
statements (and thus do nothing). The last line in every Pascal
program must be the word END followed by a period (.).

In the remainder of this manual, the reserved word
PROGRAM and the reserved words BEGIN and END that
enclose the program body are printed in uppercase lettersin
BOLDFACE.

Anillustration of the various elements that comprise a Pascal
program is shown below.

program heading PROGRAM identifier;

declarations LABEL declaration

CONST declaration

TYPE declaration

VAR declaration

PROCEDURE/FUNCT ION
declarations

program body BEGIN

statements

END.

Detailed Structure of a Program

19

Chapter 3—Computer Programming

Pascal Syntax

Identifiers

20

Declarations are used in Pascal to define the names being |
used in a program. There are LABEL, CONST, TYPE, VAR,
PROCEDURE, and FUNCTION declarations. Declarations ard
not executed when the computer encounters them; they are
used to define names. The computer begins execution with
the first statement in a program body . Declarations are

optional, but if used, they must be in the order shown below.
Note that after the LABEL, CONST, TYPE, and VAR
declarations, PROCEDURE and FUNCTION declarations can|
be in any order.

The syntax of a programming language defines the
arrangement of its elements and the construction of its
vocabulary and signs. In Pascal, the vocabulary includes
words {(identifiers} and numbers {(constants); the signs are
called reserved symbols.

Each word in Pascal is an identifier, and can be entered in
either uppercase or lowercase characters or a combination of
the two. Identifiers are of two types.

Reserved words have predefined meanings in Pascal and
include words such as PROGRAM, BEGIN, and END.
Reserved words{also called keywords) are displayed or
printed in uppercase letters, regardless of how they are
entered from the keyboard. (Note: When identifiers are
entered from the playback buffer or from a user-assigned
string, the identifier is displayed asit was entered.}

Reserved words must always be followed by a delimiter such
as a space, a semicolon, a parenthesis, or an end of line. To
help you identify these words, reserved words are printed in
uppercase letters in this manual.

User-defined identifiers are names that you defineina
program. Identifiers must start with aletter, consist of only
letters and digits, and not be a reserved word.

Although you can enter as many as 80 characters for an
identifier, the computer accepts only the first eight
characters. Any others are discarded (unlike UCSD Pascal,
which retains all entered characters but uses only the first
eight). A user-defined identifier is always displayed or
printed in lowercase letters regardless of how it is entered
from the keyboard. You can distinguish between user-
defined identifiers and reserved words by how they are
displayed.

Chapter 3—Compter Programming

Constants

ieserved Symbols

In this manual, identifiers that illustrate where a user-
defined identifier can be used are printed in {talics.

A constant is a value that does not change during the
execution of a program. In Pascal, there are four types of
congtants: numeric, character, string, and Boolean constants.

Numbers such as 50 and ~ 34.3 are called numeric constants.
Positive numbers may be written with an optional plus (+)
sign. Negative numbers must be preceded by aminus(-)
sign. Commas and spaces are not allowed in numbers.

Numeric constants written without decimal pointsare called
integers. The maximum integer allowed is 32767 and is called
MAXINT. If an integer greater than 32767 or less than

-~ 32767 is entered from the keyboard, an error occurs,

Numeric constants written with a decimal point are called
real numbers. Real numbers may be entered with any number
of digits, but they are rounded to 13 or 14 digits for storage in
the computer. If the number is entered with an odd number
of digits to the left of the decimal point, 2 maximumof 13
digits are stored. If the number is entered with aneven
number of digits to the left of the decimal point, a maximum
of 14 digits are stored. Only 10 digits of a real constant are
displayed when a program is running, but all 13 or 14 digits
are used in calculations and are displayed when a program is
listed.

A character constant is a single character enclosed within
apostrophessuchas’'a’,'N’,"*",or'b’".

A string constant is a sequence of characters enclosed in
apostrophes suchas '2301 N. Ash #39” and 'Angie ‘s ageis
12'. Anapostrophe within a string constant is represented by
two apostrophes.

A Boolean constant is the word TRUE or the word FALSE.

Some of the symbols reserved for use in Pascal denote
operations suchas +, —, * (multiply), and / (divide). Other
symbols such as; and * are used for syntactical purposes. The
symbol .. denotes all the intervening values. For example,
1..5meansthenumbers 1, 2,3, 4, and 5. Allof the reserved
symbols listed on the next page have a predefined meaning in
Pascal and are discussed in later sections. Note thatatwo-
character symbol cannot have a space between the two
characters.

21

Chapter 3—Computer Programming

Program Lines

Line Numbering

22

> >= P . , ;

() [] (* *) { }

Reserved Symbols in Pascal

The lines in a program must meet certain requirements and
restrictions. These rules are listed below along with some
features of the TI-74 that can facilitate writing your
programs.

Eachline in a TI-74 Pascal program must begin with a numbj
followed by a space. A line number can be any integer from }
through 32766. Line numbers are used only to order and ediﬁ
the program lines.

You can have the computer supply line numbers for your

program by typing NUM (or pressing the FN = keys)and the
pressing the ENTER key. The TI-74 displays 100 followed b
a space with the cursor positioned where the first character
of the line starts. After you type the statement and press th
ENTER key, the TI-74 displays the number 110 followed by
space and waits for you to enter a statement. When you have
finished entering all of the program lines, press either ENTE}
or BREAK when the next Iine number appears.

You can optionally specify where the numbering is to start
and what increment is to be used. For example, entering
1000,20 starts the line numbers at 1000 and uses incremen
of 20.

Note that if you enter the NUM command when there are
program lines in memory, NUM displays a program line if ong
already exists for a given line number. If NUM is entered wit]
no options, program line 100 is displayed if it exists.

Note also that if a program line exists but its line number is
not in the sequence NUM is using, the line is not displayed.
For example, if NUM 115,10 is entered, the numbering begi
at 115 and increments to 125. If program line 120 is stored in
memory, it is not displayed.

Chapter 3—Computer Programming

Renumbering
Program Lines

Indentation

After you have added and deleted program lines, you may
want to renumber the lines in the program. The TI-74
renumbers the lines in a program when you enter REN (or
RENUMBER).

For example, if the program

100 PROGRAM example;

110 BEGIN

119 WRITELN(' first statement displayed');

120 WRITELN('writeln is an output statement’);
125 WRITELN(' third statement displayed');

130 END.

isstored in the computer and the command REN is entered,
the line numbers will begin at 100 and increment by 10 as
shown below.

100 PROGRAM example;

110 BEGIN

120 WRITELN(' first statement displayed’);

130 WRITELN('writein is an output statement');
140 WRITELN('third statement displayed’');

150 END.

You can optionally specify the beginning line number and the
increment for RENUMBER. If using the given (or default)
specifications would cause any line number to be greater than
32766, no line numbers are changed.

Pascal statements can be indented to make the program more
readable. Statements are often indented a number of spaces
to show the layout of a program. You can add any number of
spaces between a program line number and the beginning of
the Pascal statement. These spaces are retained when the line
is printed or displayed. Any other superfluous spaces are
deleted.

The reserved words BEGIN and END that enclose the
statements of a program are usually aligned with the reserved
word PROGRAM. The statements that make up the program
body are usually indented two to three spaces to show how
they fit together and to make the program easier toread.

For example, the program from chapter 2 could be indented
as shown on the following page.

23

Chapter 3—Computer Programming

Line Length

Punctuation

Multiple-
Statement Lines

Statements on
Multiple Lines

24

100 PROGRAM example;

110 BEGIN

120 WRITELN('writeln is an output statement’);
130 END.

Aline can be up to 80 characters long, including the line
number. Additional characters typed at the end of the line
replace the 80th character. When aline is entered, the
interpreter removes any extra spaces (other than indention
spaces). Note, however, that when the interpreter lists a
Pascal line, it may add some spaces to the line for clarity. If
these added spaces cause the length of the line to exceed 80
characters, an error occurs during the listing.

A semicolon is used to end a statement or declaration and
separate it from the next one. This use of the semicolon
enables you to enter more than one statement or declaration
on aline and also to continue one statement or declaration
over several lines. The computer ignores spaces entered on a
line and continues reading characters as part of a line until it
encounters a semicolon or the reserved word END.

A semicolon is not required to end all statements. For
example, a semicolon is not necessary after the reserved
word BEGIN and is optional before the reserved word END.

You can enter several statements on a line by separating them
with a semicolon. BEGIN must be separated from the
statement following it and END must be separated from the
statement preceding it by some type of delimiter, suchasa
space or an end of line.

You can enter as many statements on aline as will fit into 80
characters. For example, the following program is entered on
one line.

100 PROGRAM example; BEGIN WRITELN('One line');
WRITELN('END') END.

If you run the program, press ENTER or CLR after the
message One | ineisdisplayed to see the next line.

A statement can be entered on multiple lines. For example,
the statement :

140 WRITELN('third statement displayed');

can be entered as shown on the next page.

hapter 3—Computer Programming

Comments

Interpreter
Options

140 WRITELN

150 (

160 'third statement displayed’
170)

180 ;

The interpreter continues reading lines until it hasread a
complete statement. In this case, the semicolon at line 180
signals to the interpreter the end of one statement and the
beginning of another.

Comments make a program easier to understand and can
appear anywhere in a program except in the middle of an
identifier, constant, reserved word, or two-character symbol.
The text of a comment is ignored by the computer.

Comments are placed in a program by enclosing them in the
symbols (* and *)or { and }. These symbols may not be mixed.
You can, however, use one type of symbol to enclose a
comment that contains another comment enclosed by the
other type of symbol. Note that a comment cannot be
extended to the next line. The following example illustrates
the use of comments.

100 PROGRAM example;

110 BEGIN (* start of program body *)

120 WRITELN('writeln is an output statement’');
130 {Only statement}

140 END. (* example *)

It is good programming practice to include the name of the
program in a comment on the last line of a program.

Note: Comments can contain specific instructions for the
interpreter. This use of a comment is discussed in the next
section and is not ignored by the computer.

You can specify three optionsto the interpreter to implement
as it executes a program. The options enable you to:

* Have the computer wait or not wait after characters are
sent to the display.

+ Have the computer check or not check input/output
operations.

25

Chapter 3—Computer Programming

An option is specified in a comment anywhere in a program
after the reserved word BEGIN of the program body. As the
computer scans the program lines during execution, an
interpreter option is turned on or off as specified only if the
statement containing the comment is executed. Only one
option can be included per comment.

To specify an option, place a $ immediately after the opening
delimiter, (* or { in acomment, followed by the letter w
(wait) or i (input/output check). A plus sign (+) written after
the letter causes the computer to turn on the option; a
negative sign (-) written after the letter causes the computes
to turn off the option.

For example, the following program line includes a comment
containing an interpreter option.

110 BEGIN {$w-}

This comment causes the interpreter to turn off the wait that
occurs when characters are displayed and continue program
execution. The characters may be displayed so quickly,
however, that you may not have time to view them.

For example, when the WRITELN in line 120 in the following
program is performed, the computer leaves the charactersin
the display until the ENTER or CLR key is pressed. When
either key is pressed, the comment causes the computer to
turn off the wait option. Without the wait, the output is
displayed so quickly that you cannot read it. After the
WRITELN is performed, the wait option is turned back on in
line 130 and the characters printed by line 140 remain in the
display. Program execution is stopped until you press the
ENTER key.

100 PROGRAM example;

110 BEGIN

120 WRITELN(first statement displayed');{$w-}

130 {turn off wait}

140 WRITELN('writeln is an output statement’);{$w+}

150 {turn on wait}
160 WRITELN('third statement displayed’);
170 END.

26

hapter 3—Computer Programming

Jutput Statements

The other option enables you to determine if input and
output operations are checked by the interpreter during
program execution. If an input/output error occurs, the
program is aborted. You can perform your own checking
within the program, however, by turning off the
input/output check option as shown below.

190 {$i-}
200 WRITELN('No [/0 check'):

Checking input/output operations in a program is discussed
laterin chapter 8.

After the RUN command is entered and the interpreter
encounters the reserved word BEGIN in the program body,
the interpreter turns on the default options shown below.

Letter Default Option

w + The interpreter suspends execution of a

program when the program writes

characters to the display. This delay gives
youtime to view the display. When either

the CLR or ENTER key is pressed,
program execution is resumed.

i + The interpreter checks input/output
operations. See IORESULT in chapter 8

Output statements are used to display the resultsof a

program. An output statement includes (in parentheses) a list

of items to be printed. The itemsin the list are separated by
commas. Any item enclosed in apostrophes is called a

character string and is printed exactly as it appears between

the apostrophes. Any item not enclosed in apostrophes has
value printed, with no blanks printed before or after it.

its

27

Chapter 3—Computer Programming

The WRITELN
Statement

The WRITE
Statement

The following sections describe using output statements to
display data. Refer to chapter 8 for information on using
output statements with files.

This statement displays the data listed within the parenthese
and then advances the cursor to the next line. Normally, the
interpreter option wait (w)is turned on so that you have time
to view the displayed data. The ENTER or CLR key must be
pressed to continue program execution when the wait option
isin effect.

This statement displays the data listed within the parenthese
and leaves the cursor at the end of the displayed data. The
next input/output operation to the display begins at the
location of the cursor. Normally, the interpreter option wait
(w)is turned off before a WRITE statement because more
datais goingto be either displayed or requested on the same
line.

When the following program is run, the wait option (turned
on when the interpreter encounters the reserved word
BEGIN in line 110) causes the data displayed by the first
WRITE statement to remain in the display until the ENTER
key is pressed. The next output is then displayed and also
remains in the display until the ENTER key is pressed.

Program

Displa;

100 PROGRAM examplel;

110 BEGIN

120 WRITE(2+5,' is the answer'); 7 is the answei

130 WRITE(’

for number 10'); 7 is the answer for number 1(

140 WRITELN;

7 is the answer for number 1(

150 END. (*examplel*)

28

Note that line 140 actually displays nothing, but the
characters in the display remain there until ENTER is
pressed. Line 140 advances the cursor to the next line, where
the next input or output will begin.

Chapter 3—Computer Programming

In the following program, the wait option is turned off before
the WRITE statements are executed. The wait option is
turned back on before the WRITELN in line 140 moves the
cursor to the first column of the next line.

Program Display

100 PROGRAM example2;

110 BEGIN {3$w-}

120 WRITE(2+5,” is the answer’);

130 WRITE(' for number 10');

140 WRITELN {$w+}; 7 is the answer for number 10

150 END. (*example2*)

In the following program, each line of output is displayed on a
separate line with the WRITELN statement. The ENTER key
canbe pressed to view each succeeding line.

Program Display

100 PROGRAM examp | e3;

110 BEGIN

i20 WRITELN(2+5,' is the answer’); 7 is the answer
:130 WRITELN(' for number 10'); for number 10
140 WRITELN; (displays a blank line and advances the
150 END. (*example3*) cursor to the next Iline)
Terminating The three valid methods of terminating program execution
Program include the reserved word END, the HALT statement, and
Execution the EXIT statement.

;'I‘he Reserved The reserved word END, followed by a period (.), appears
Word END after the last statement in a pragram. When END followed by

a period is encountered, program execution stops. Note that
the period must immediately follow END.

29

Chapter 3—Computer Programming

The HALT
Statement

The EXIT
Statement

Using Statements
without Line
Numbers

Error Handling

30

The HALT statement is used in abnormal situations to
terminate program execution before the reserved word END.
When HALT is executed, the program aborts, displaying the
message Programmed Halt.

The EXIT statement can be used to terminate a program
before the reserved word END. When EXIT terminates
program execution, no message is displayed.

Using the HALT and EXIT statements to end program
execution is described in chapter 7.

Many Pascal statements can be performed immediately by
entering them without line numbers. In TI-74 Pascal, this
type of statement is called an imperative and is executed as
soon as the ENTER key is pressed. For example, the line

WRITELN('writeln is an output statement’);

displaysthe messagewriteln is an output statement
immediately after the ENTER key is pressed.

Note that an imperative must fit on a single line and must end
with a semicolon. Refer to appendix Cin the TI-74 Learn
Pascal Reference Guide for alist of the statements that can be.
used as imperatives.

Asyou begin writing programs, you will find that some types
of errors produce an error message as soon as you enter the
line. You can use the SHIFT PB feature to display the
erroneous line and use the edit keys to correct it.

Other types of errors in a program are not detected by the
interpreter until you run the program. Errors can be detected
at two different times after the RUN command has been
entered. The first time is when the computer scans the
instructions to detect specific types of errors before the
program actually begins execution. The second time is during
program execution. Errors detected at either time cause
program execution to terminate.

For example, the following program hastwo errorsinit.

100 PROGRAM exampie;

110 BEGIN

120 WRITELN("writeln is an output statement’);
130 END

Chapter 3—Computer Programming

Lines 100, 110, and 130 can be entered and stored in memory.
However, when you try to enter line 120, the error indicator
appears and the errormessage | | legal character in
text isdisplayed. To correct the line, press SHIFT 9 to
display it, and then change the quotation mark to an
apostrophe.

When you run the program, the message | | legal nesting
isdisplayed. Press = to display the error code and the line
number of the erroneous line. In this case, the error code and
line number are E27 L.130.

To display the line specified in the error message, press t or ¢.
Use the edit keys to place the period after the word END and
enter the corrected line. The program will then run and
terminate correctly. .

Occasionally the line displayed as causing an error may not be
the source of the problem. Values generated or actions taken
elsewhere in the program may cause the error. The line
number displayed is the line where the interpreter detected
an error. For example, enter the following program.

100 PROGRAM example

110 BEGIN

120 WRITELN(' writeln is an output statement’);
130 END.

When you run the program the error message ' ;' expected
is displayed. When you pressthe = key, the error code and
line number are E14 L110. Presstor ¢ todisplay line 110.
Line 110 does not have an errorinit, but line 100 does. After
the interpreter scanned line 100, it moved to line 110,
expecting to find a semicolon to separate the statements on
lines 100 and 110. Therefore line 110 is displayed as the
erroneous line because the interpreter detected a missing
semicolon during its scan of line 110. Press ¢ to display line
100 and enter a semicolon after the word examp | e.

Note that if an error code is preceded by aWrather thananE,
the message displayed was a warning and not an error.
Program execution continues after a warning when the
ENTER key is pressed. Remember that the line number
displayed in an error (or warning) message is an indication of
where the interpreter detected the error (or warning).

Refer to appendix I in the TI-74 Learn Pascal Reference
Guide for a list of the error codes and messages.

31

Chapter 3—Computer Programming

Debugging
a Program

32

When a program does not work the way you intended, there
are logical errorsinit (called ‘‘bugs’’ in computer usage).
Testing a program to find these bugsis called ‘‘debugging’’ a
program. When a program does not work properly, think
about what could be wrong, then devise tests such as
displaying values throughout the program to aid you in
finding the bugs.

The BREAK command can be used to stop a program at
specific lines and allow you to determine what is happening -
in the program. When a program stops at a breakpoint, you
can display values in the program.

For example, breakpoints can be set at lines 120 and 130 in
the program

100 PROGRAM exampleZ2;

110 BEGIN

120 WRITE(2+5. " is the answer’);
130 WRITE(' for number 10');

140 WRITELN;

150 END. (*exampie2*)

by entering the BREAK command before the RUN command
asshown below.

BREAK 120,130
RUN

After the RUN command is entered, the breakpoint at line
120 causes the message Break to be displayed.

Press the CLR or ENTER keys to erase the message and you
can then perform any imperative statement. Enter CON to
resume program execution. The program then displays the
message 7 is the answer

from the WRITE at line 120. Press the ENTER key and the
breakpoint at line 130 stops the program and displays the
Break message. Press the ENTER or CLR keys to erase the
message and enter CON toresume program execution.
The message

for number 10
isthen displayed. Press the ENTER key to proceed to the

WRITELN in line 140. The message remains in the display
until the ENTER key is pressed again.

Chapter 3—Computer Programming

’E'.Review
iChapter 3

-

I TP S

Note that for statements entered on multiple lines, the
breakpoint occurs at the beginning of the first executed
statement on or after the specified line. Breakpoints entered
in a program continue to stop program execution until you
use the UNBREAK command to delete the breakpoints.

Every Pascal program must contain two parts. These
partsare
and

A Pascal program body is enclosed between the reserved
words
and

A program block consists of declarations and

Declarations are used to names.

Declarations that are used in a program must appear in
what order?

followed by

Each word in Pascal is called an

Which of the following user-defined identifiers are valid?
measure

Hpercent

printheader

END

33

Chapter 3—Computer Programming

accountl
sales-tx

8. Name the four types of constants.

9. InPascal, anumber written with a decimal point is called
a__ number.

10. Integers greater than
orless than cannot be entered from the keyboard

11. Anapostrophe within a character string is represented

12. What is wrong with the following comment? 1

(*Two-character symbols cannot have a
space between them. *)

13. The computer supplies line numbers for you when you

enterthe___ command and renumbers the
program lines whenyouenterthe _______ command.
14. The maximum lengthofalineis___ characters.

15. Whatisthe errorin the following line?

100 PROGRAM example; BEGIN WRITELN
('One line’) WRITELN('end'); END.

16. Commentsare enclosedinthesymbols__ and
or and

17. What does the following interpreter option do?

150 BEGIN {$w-}

34

Chapter 3—Computer Programming

18. Write the output produced by the following program
segments.

150 WRITE('The answer is ');
160 WRITELN(10);

170 WRITELN('The answer is ');
180 WRITELN(10);

19. Write a program that displays the following.
545 is 10
20. Write a program that displays the following.
The results are listed below
x=5
y=10

;; 21. The three valid methods of terminating program
execution are

_ 22, Animperative must fit on a single line and must end with
: a

)
i 23. Find two errorsin the following program.
3
5100 PROGRAM example;
=110 WRITELN('writeln is an output statement');
120 END
N

35

Chapter 4—Expressions

Introduction

Constant
Declarations

36

Expressions are the calculations that you assemble ina
program for the computer to perform. Before you can write
expressions, you must be familiar with the elements of
expressions and the rules for combining them. These
elements—constants, variables, operators, and functions—
are described in the following sections.

A constant declaration is used to define the value of a user-
defined identifier as a numeric, string, character, or Boolean
constant. The value of a constant identifier cannot be altered
during program execution.

A constant declaration in its simplest form is
CONST identifier=value;

where CONST informs the interpreter that the specified
tdentifier has the value of the indicated numeric, character,
string, or Boolean constant. For example, the identifier
salestax canbe defined as the number 0.05 by including it
in a CONST declaration.

CONST salestax=0.05;

You can declare several constants in a program. Note,
however, that the reserved word CONST can appear only
once in a declaration section. Inthe lines

CONST salestax=0.05;
heading='sales tax';
age=21;
grade="A";
flag=TRUE;

five constants are defined for use in a program.

It is good programming to declare a number or a string of
characters that is used more than once in a program as a
constant. Then if the value of the constant has to be changed,
you need to edit only the CONST declaration, thus reducing
the chance for error.

In the following program, which prints-the circumference of
circles with diameters of 2 cm, 9in., and 3 m, a constant
declaration is used to define the value of the constant
identifier pi with the value of n(3.14159265359).

Chapter 4—Expressions

Variable
Declarations

100 PROGRAM circum;

110 CONST pi=3.14159265359;

120 BEGIN

130 WRITELN('Circum. of 2 ¢cm: ' pi*2,' cm’');
140 WRITELN('Circum. of 9 in: ' ,pi*9,' in');
150 WRITELN('Circum. of 3 m: ' ,pi*3,' m');
160 END.

If you run the program, the following output is displayed.
Circum. of 2 cm: 6.283185307 cm

Circum. of 9 in: 28.27433388 in

Circum. of 3 m: 9.424777961 m

When only constants are used in a program, a program can
become very long if it has to perform many computations. If
the values of items can change in a program, the program is
much easier to write and much more useful.

Variables are used when the values of items in a program vary
or change. A variable is a name given to a memory location in
the computer. You can store a value in the location and then
change it in the program as many times as needed.

Before you can use a variable in a Pascal program, you must
defineitina VAR (for variable) declaration. VARiable
declarations must appear after any CONSTant declarations.
You can define as many variables as you need in a program;
however, the reserved word VAR can appear only onceina
declaration section.

A variable declaration in its simplest form is
VAR identifier : type;

where VAR informs the interpreter that a variable with a
name of identifier is being declared with a specified type. A
variable’'s type determines how the variable can be used ina
program. There are five fundamental types in Pascal that are
used to form expressions. These five types are listed below.

« INTEGER
« REAL

+« CHAR

¢ STRING

« BOOLEAN

37

Chapter 4 —Expressions

INTEGER Type

38

The following VAR declaration defines some variables and
their types.

VAR lenth,width,height:REAL;
counter, index: INTEGER;
payment :REAL ;
name:STRING;
grade:CHAR;
test:BOOLEAN;

A program with the above VAR declaration in it can use the
following variables.

s lenth,width, height, and payment will contain REAL
values

e counter and index will contain INTEGER values

« name will contain a character string

» grade will contain a single character

¢ test will contain a BOOLEAN value

A program cannot use a variable that has not been declared in}
a VAR declaration. Each time a variable isreferenced, the !
computer verifies that the variable is used in the program asitj
was declared. If the variable is used improperly, an error :
message is displayed. For example, CHAR variables cannot be;
multiplied and INTEGER variables cannot have REAL values.

Remember that although the value of a variable may be ‘
changed at any time in a program, the type of a variable 3
cannot be changed. :

Integers are the natural counting numbers, their negatives, |
and the number zero. The maximum integer allowed in TI-74
Pascal, called MAXINT, is 32767; the smallest integer alloweg:
is —-32767. Note that — 32768 is allowed in computationsin
the computer, but cannot be entered from the keyboard.

The following are valid integers in Pascal.
39 +40

0 MAXINT

- 543

Some invalid integers are shown below.
5,280 nocomma allowed

3.14 no decimal point allowed
40394 valuetoo large for aninteger

{_r

Chapter 4—Expressions

REAL Type Real numbers in Pascal correspond to the decimal numbers or
floating-point numbers. Real numbers in the TI-74 can have a
magnitude assmallas + 1.0E ~ 128 or as large as
+9.9999999999999E + 127. Only 10 digits of a real constant
are displayed when a program is running, but all 13 or 14
digits are used in calculations and are displayed when a
program is listed.

In Pascal, a real number must have the following:
* a decimal point

« at least one digit to the left of the decimal point

: » at least one digit to the right of the decimal point

The following are examples of real values in Pascal.

+345.0 2.236456
-345.0 0.0
0.1 40394.0

Examples of tnvalid real values are shown below.

+345 no decimal point and no digit to the right of
the decimal point

-345 no decimal point and no digit to the right of
the decimal point

: 1 digit missing to the left of the decimal point

7 2.236456 — minus sign must precede the number

0 no decimal point and no digit to the right of

the decimal point

40,394.0 no commas allowed in numbers

Note that an integer value can be used in computations for a
real value because the interpreter can convert an integer to
itsreal equivalent. For example, if the integer 7 is used in
computations with real values, the interpreter convertsit to
7.0. :

Real numbers can also be written in scientific notation. A real
value is automatically displayed in scientific notation when
its magnitude is 9999999999.49995 or greater. In scientific
notation, a number is expressed in a format in which a
number (the mantissa) is multiplied by 10 raised to a power
(the exponent).

For example, the number 12345678 can be expressed in
scientific notation as 1.2345678E + 7, which represents
1.2345678 x 107. The number 0.00000075 is expressed in

39

Chapter 4—Expressions

CHAR Type

STRING Type

40

scientific notation as 7.5E — 7, which represents 7.5 x 10~ 7. In ._
Pascal, numbers represented in scientific notation cannotbe 3
written with spaces in them. Therefore, the number 7.5 E-T7 &
must be written without aspaceas7.5E - 7.

When a number is displayed in scientific notation, the :
computer displays a maximum of nine digits. If the exponent
has two digits, the mantissa is limited to seven digits. When
the exponent has three digits, the mantissa is limited to six
digits.

Some examples of real numbers in scientific notation are
shown below.

1.717172E +7 1.2E-5

A characteris any symbol that is in the TI-74 characterset. In :
Pascal, character constants are enclosed in apostrophes. :

Some examples of characters are shown below.

o ‘N’
9 ‘B’
T e
o e

ey

(The character constant apostrophe must be
represented as two apostrophes inside the enclosing
apostrophes.)

A stringis a sequence of characters enclosed in apostrophes.
The following are valid string constants.

‘Pascal language’
‘the cat’’'s meow' (embedded single quotes are typed twice)
(the empty string)

You can specify the maximum length of a string variable by
following the reserved word STRING with aninteger constant
enclosed in brackets. This integer must be from 1 through
255. If you do not specify the length of a string variable, a
default value of 80 charactersis used. A string cannot contain |
more characters than its specified (or default) length. A string
with no characters is called a null string and has a length of
zero.

Chapter 4—Expressions

il e o bt o & LA T R

FORNE M A e R e re e WY

Examples of valid string variables are shown below.

VAR heading:STRING;
(* by default, maximum length is 80 *)
grafline:STRING[200]; (* max length 200 *)

A string’s maximum length specifies the maximum length
that the string can be throughout the program. The dynamic .
length of a string isits actual length and is equal to the
number of characters that are currently in the string. The
dynamic length of a string may change during the execution
of a program, but it may never be greater than the string’s
maximum length.

The characters of a string are numbered from left to right
beginning with 1 and continuingto the last character
currently in the string. This numbering system is called
indexing. To access a character in a string, write the name of
the string followed by the character's index enclosed in
brackets. For example, if the string variables proglang and
version contain the characters *‘PASCAL’ and *‘'TI",
respectively,

proglang[1] contains “pP
progiang[5] contains ‘A"’
version[1l] contains “‘T"

Note that if a string is indexed past the last character
currently in it, an error occurs. The empty string cannot be
indexed.

A STRING data type contains zero or more characters. Note,
however, that when an identifier is defined in a CONST
declaration,

» anidentifier defined with zero or more than one characteris
considered a STRING constant.

* anidentifier defined with one characteris considered a
CHAR constant and must be used accordingly.

For example, suppose the following declarations are entered
in a program.

CONST strnamel='abc’;
strname2="";
strname3='a';

VAR strdata:STRING;

41

Chapter 4—Expressions

The value of st rnamel and the value of st rname2 can be
stored in the variable st rdata (which isa STRING type).
However the value of st rname3 cannot be stored in st rdata
because st rname3 has exactly one character, makingits type
CHAR rather than STRING.

BOOLEAN Type Boolean data types have a value of TRUE or FALSE. These
values, TRUE and FALSE, are called predefined constantsin]
Pascal. Note that when Boolean types are compared, FALSE
is defined to be less than TRUE.

Setting the Values Initially, all the variables declared in a Pascal program are

of Variables undefined. To give a value to a variable, you must store a
value in the memory location reserved for that variable by
using an assignment statement or an input statement.

Assignment The assignment statement is used to store values in variables. ii

Statements An assignment statement uses the symbol : = that is called the%
assignment operator. The : = symbol should be read as 3
‘*becomes equalto’’ and should not be interpreted as an :
ordinary equals sign. The equals sign by itself cannot be used
as an assignment operator.

lenth:=10.5; Storesthereal value 10.5in the location
called lenth

counter:=25; Storesthe integer value 25in the location
called counter

name:=‘Brian’'; Storesthestring ‘‘Brian’’ in the location
called name

grade:=‘A’"; Stores the character **A’’ in the location
called grade

test:=TRUE; Stores the Boolean value TRUE in the
location called test

The left side of the assignment statement is the name of the
location in memory where the value on the right side is
stored. The program

100 PROGRAM exvar;
110 VAR a,b: INTEGER;

120 BEGIN
130 a:=3;
140 b:=5;

150 WRITELN(' The values of the variables

are’ ,a,' and ',b);
160 END. (* exvar *)

42

. Chapter 4—Expressions

P T T

stores the values 3 and 5in a and b, respectively, as shownin
the output below.

The values of the variables are 3 and 5

The right side of an assignment statement is always executed
first, regardless of what variable appears onthe left. In the
statement,

X:=z;

the computer determines the value stored in the location
named z and stores the same value in the location called x.
Both x and z then have the same value. The previous
contents of x are destroyed. The program

100 PROGRAM exvar;
110 VAR a,b: INTEGER;

120 BEGIN

130 a:=35;
140 b:=23;
150 a:=b;
160 b:=a;

170 WRITELN('The values of a and b are ',
a,’ and ',b);
180 END. (* exvar *)

produces the output shown below.
The values of a and b are 23 and 23

In an assignment statement, the value being assigned toa
variable must be of the same data type as the variable. Note,
however, that integer values can be assigned to real
variables.

The following program defines a constant called pi thatisa
REAL value. The variables a and b are INTEGER; the
variables ¢ and d are REAL. When c is assigned a value, the
computer finds the integer value stored in a, convertsit to its
real equivalent, multipliesit by pi, and stores the real result
in c. A similar process is used to assign a value to d.

100 PROGRAM exvar;

110 CONST pi=3.14159265359;
120 VAR a,b: INTEGER;

130 c,d:REAL;

43

Chapter 4—Expressions

Input Statements

44

140 BEGIN

150 a:=3;

160 b:=5;

170 c.=a*pi.

180 d:=b*pi;

190 WRITELN(a,’ ',¢);
200 WRITELN(b," '.d);

210 END. (* exvar *)

The output from the program is shown below.
3 9.424777961

5 15.70796327

In Pascal, the READ and READLN statements are used to
input data. An input statement is used to store in a variable a
value entered from the keyboard or read from a file. Aninput |
statement contains (in parentheses) one or more variables
that are to be assigned a value or values. A variable included
in an input statement must be an INTEGER, REAL, CHAR, or
STRING type; the value entered must be a valid data type for
that variable type.

For example, when the input statement
160 READ(x);

is performed, the computer waits until a value is entered,

from the keyboard. When a value is entered, it isstored in the :

variable x.

Inthe following program, the integer value entered from the
keyboard isstored inthe INTEGER variable a and then
displayed. The next value entered can be either an integer or
real value because it is stored in the REAL variable x.

100 PROGRAM exinput;

110 VAR a:INTEGER;

120 x:REAL;

130 BEGIN

140 READ(a) ;

150 WRITELN(' a= ',a).
160 READ(x) ;

170 WRITELN(C x= ',x);
180 END. (* exinput *)

T, e —

Chapter 4—Expressions

If 12 isentered for a, the display contains the following after
the first WRITELN is executed.

a= 12

If 7 isentered for x, the display contains the following after
the second WRITELN is executed.

x= 7.0

If an input statement contains two or more variables, they
must be separated by commas. If x, y, and z have been
declared INTEGER variables and the statement

160 READ(x.y,z);

is executed, the computer waits until three integer values
have been entered from the keyboard. Each value entered is
stored in the specified variable as soon as it is entered. When
more than one value is being entered, the values can be
separated by one or more spaces or can be entered on
different lines.

For example, the following program accepts an integer value
for a, areal value for x, and an integer value for b. The values
can be entered onone, two, or three lines. If more than one
value is entered on a line, the values must be separated by at
least one space.

100 PROGRAM exinput;
110 VAR a,b: INTEGER;

120 x :REAL;

130 BEGIN

140 READLN(a, x,b);

150 WRITELN(' a= ',a,’ x=',x,"’ b= ',b);

160 END. (* exinput *)

If the program is run and the values 71, 7.12, and 40 are
entered, the program displays the output shown below.

a= 71 x=7.12 b= 40

When the computer is reading data to assign to an INTEGER
ora REAL type variable, all leading blanks and ends of lines
are skipped until a nonblank character is reached. If the
nonblank character is not a sign or a digit, an error occurs.

45

Chapter 4—Expressions

46

All characters after the nonblank character are read untila
nonnumeric character is reached. For an INTEGER type, the
nonnumeric character causes the computer to stop reading
characters for that integer variable. Fora REAL type, all
characters after the nonblank are read until a nonnumeric

[

character is reached that is not a valid character for a number

expressed in either decimal or scientific notation.

The value 39.0 may be entered as

39.0 (decimal notation)

or

+3.9E + 01 (scientific notation)

or

39 (aninteger, which may be entered for areal variable)
For example, the following program accepts three REAL
values from the keyboard and assigns the valuesto x, y,

and z.

100 PROGRAM exread;
110 VAR x,y,z:REAL;

120 BEGIN
130 READLN(x,y,Z);
140 WRITELN(' x= ' ,x,' y=".y,’ z= ', z);

150 END. (* exread *)

If you enter the input line shown below, the program displays
the characters shownin the output line.

Input: 39.0 +3.9E+01 39
Output: x= 39.0 y=39.0 2z= 39.0

For a STRING type, all characters are read up to the end-of-
line (ENTER) character. For a CHAR type, the character
pointed to by the cursor is stored in the variable and the
cursor advances one column. If the character just read is the
last one on the line, the cursor then points to the end-of-line

 (ENTER)character. If the end-of-line characterisread, a

space is stored in the CHAR variable and the cursor moves to
the first character on the next line.

Chapter 4—Expressions

The READLN Statement

The READLN statement stores values in its variables, ignores
any other charactersto the end of the line, and then moves
past the end-of-line character to position the cursor to the
first character in the next line. For example, the program

100 PROGRAM exreadlIn;
110 VAR x:INTEGER;

120 y,z:REAL;

130 BEGIN

140 READLN(x.y) ;

150 READLN(Zz) ;

160 WRITELN(x) ;

170 WRITELN(y) ;

180 WRITELN(Z) ;

190 END. (* exreadin *)

reads and displays one integer and two real values. If the
values shown in the input line are entered, the program
displays the valuesshown in the output line.

Input: 12 7.123%9e3 45.5
12.739490

Output: 12 7123.9
12.73949

Note that the number 45.5 is ignored by the READLN
statement because there is no variable to assign it to as the
READLN statement moves past the end of the line to the first
character in the next line.

When you execute a READLN statement with no variables in
parentheses, no data is read and the input cursor is moved to
the first character in the next line. For example, the
statement

READLN;

moves past the end-of-line marker and positions the cursor at
the first character in the next line.

The READ Statement

The READ statement allows the next input statement (READ
or READLN)to get values from the same line. A READ
statement also reads to the end-of-line character, but it does
notignore characters as it moves to the end of the line. All of
the characters are retained in an input buffer for the next
input statement(s).

47

Chapter 4—Expressions

48

If the first READLN statement in the previous example is
changed to a READ statement, the input line can be entered
onone line, asshown below.

100 PROGRAM exread;
110 VAR x:INTEGER;
120 y,2:REAL;

130 BEGIN

140 READ(x,y) ;

150 READLN(z) ;

160 WRITELN(x) ;

170 WRITELN(y) ;

180 WRITELN(Z) ;

190 END. (* exread *)

Input: 12 7.1239e¢3 12.739490 45.5
Output: 12 7123.9 12.73949

Note that the value 45.5 is again ignored by the READLN
statement. If the READLN statement were a READ
statement, however, this value would be retained in an input
buffer for the next input statement. The output would begin
where the READ statement left the cursor.

The extra values placed in an input buffer by READ are
retained there for the next input statement. These values are
assigned accordingto the following rules.

« If the next input statement is another READ statement, the
variablesin this READ statement are assigned values from
the extra values. If any values still remain unassigned, they
are retained until the next input statement is encountered.

¢ If the next input statement isa READLN statement, the
variables in the READLN statement are assigned values
from the extra values. If any values still remain unassigned,
they are discarded.

Only one string can be read in an input statement because the
charactersin a string include every character from the
beginning of the string up to the end-of-line character.
Therefore, the statements

150 READLN(stringl, string2);

and

W T ek A S

Chapter 4—Expressions

160 READ(stringl);
170 READ(string2);

resultin string2 beinga null string.

Toread thetwostrings, stringl and string2, two READLN
statements should be executed as shown below.

READLN(stringl);
READLN(string2);

The following program is an illustration of how the READ and
READLN statements read entered data. Two integers are
read and then a characterisread. Tworeal values are then
read followed by a string. If the data shownin the input line is
entered, the results (or output) displayed are those shown in
the output line.

100 PROGRAM getdata;
110 VAR m,n: INTEGER;

120 x,y:REAL;
130 a:CHAR;
140 st :STRING;
150 BEGIN

160 READ(m,n) ;
170 READ(a) ;

180 READ(x,y);
190 READLN(st) ;
200 WRITELN(m) ;
210 WRITELN(n);
220 WRITELN(x) ;
230 WRITELN(y) ;
240 WRITELN(a) ;
250 WRITELN(st);
260 END. (* getdata *)

Input: 12 7A 40.5 39.4 ‘Thisisatest’
Output: 12 7 40.5 39.4

A 'This is a test’
Using Prompts for Input

A program can use an output statement to display a message
that prompts for input. For example, if the y or n key should
be pressed to continue or stop program execution, a program
could include a prompt for the character asshown below.
Note that the wait interpreter option is turned off after the
WRITE statement but before its semicolon. Otherwise, the

49

Chapter 4—Expressions

Operators

INTEGER Data
Operators

50

prompt would be displayed with the wait option
implemented. Then the ENTER or CLR key would have to be
pressed before the computer could accept data.

Afterthe dataisread, the wait option must be turned back on
so that the results of the WRITELN can be read in the display.

100 PROGRAM exprompt;

110 VAR ch:STRING;

120 BEGIN

130 WRITE(' Continue? (y or n)') {%w-};
140 READ(ch) {$w+}/

150 WRITELN(ch) ;

160 END. (* exprompt *)

With each data type, specific operations can be performed by
using a special symbol, called an operator, with the data.
Unary operators process one quantity (called an operand);
binary operators process two operands.

There are three different kinds of operators.

arithmetic operators perform arithmetic processes such as
addition and subtraction on

operands.
relational operators compare two operands.
logical operators perform logical tests on the

true/false values of operands.

The arithmetic, relational, and logical operators that can be
used with each data type are discussed in the following
sections.

The following operators can be used with INTEGER data.
Arithmetic Operators

There are two unary operators (+ and -)and six binary
operators(+, -, *,/, DIV, and MOD).

Unary operators

+ keeps the sign of the operand following it.

- changes the sign of the operand following it.

Chapter 4 —Expressions

Binary operators

+

DIV

MOD

computes the sum of the left and right operands.

computes the difference between the left and right
operands.

computes the product of the left and right operands.

computes the quotient of the left operand divided by
the right operand. The result isa REAL value.

computes the quotient of the left operand divided by
the right operand and truncates the result (drops any
digits to the right of the decimal point). DIV returns an
integer.

computes the quotient of the left operand divided by
the right operand and returns only the remainder. MOD
returns an integer.

Examples of using arithmetic operators with integer data are
shown below.

Operation Result Comments

-(-3) 3 changessign of the operand

40+7 47

12-7 5

5*6 30

52 - 2.5 returnsaREALresult

25DIV3 8 25/3is8.333; the integer portion of
the quotient is 8

-25DIV3 -8 -25/3is —8.333; the integer portion
of the quotient is - 8

25MOD 3 1 25/3is 8, with a remainder of 1

-25M0OD 3 -1 -25/3is — 8, with aremainderof -1

7MOD7 0 7/7is1, witharemainder of 0

51

Chapter 4—Expressions

52

Relational Operators
Seven relational operators can be used with integer data. A
relational operator returns a value of TRUE or FALSE, based !

onthe comparison.

> (greater than) returns a TRUE result if the left
operand is greater than the right
operand. Otherwise, FALSE is
returned.

>= (greaterthan returns a TRUE result if the left

or equal to)

operand is greater than or equal to
the right operand. Otherwise,
FALSE is returned. 1

(less than)

returns a TRUE result if the left
operand isless than the right
operand. Otherwise, FALSE is
returned.

(less than or
equalto)

returns a TRUE result if the left ‘
operand isless than or equaltothe ;
right operand. Otherwise, FALSE i
returned.

(equal to)

returns a TRUE result if the left and ’
right operands are equal. Otherwise,’
FALSE isreturned.

<>

(not equal to)

returnsa TRUE result if the left and
right operands are not equal.
Otherwise, FALSE is returned.

IN

(set
membership)

returns a TRUE result if the left
operand isan element of the right
operand. The right operand must be |
aset of values enclosed in brackets.
If the left operand is not a member of
the right operand, FALSE is |
returned.

Examples of using the seven relational operators are shown
onthe next page.

 Chapter 4—Expressions

Operation Result Comments
4>3 TRUE
4>5 FALSE
4>=4 TRUE
4>=5 FALSE
4<5 TRUE
4<3 FALSE -
; 4<=4 TRUE
¥ 4<=3 FALSE
i 4=4 TRUE
4=5 FALSE
:'f i 4<>5 TRUE
2 4<>4 FALSE
4]1N[4,5,6] - TRUE The integer 4 isin the set
o showninbrackets.
41N[1,2,3] FALSE The integer 4 is not in the set.
4IN[-5..5] TRUE The integer 4 isin the set of

integers from — 5 through 5.

; Logical Operators
Logical operators cannot be used with INTEGER data.

«j.EAL Data The following operators can be used with REAL data.

i ‘Dperators

o Arithmetic Operators

i There are two unary and four binary operators that can be
used with REAL data.

53

Chapter 4—Expressions

Unary operators

+ keeps the sign of the operand following it.

- changes the sign of the operand followingit.
Binary operators

+ computes the sum of the left and right operands.

- computesthe difference between the left and right
operands.

* computes the product of the left and right operands.
/ computes the quotient of the left operand divided by
the right operand. DIV may not be used with REAL

numbers.

Examples of arithmetic operations are shown below.

Operation Result Comments

1.2+0.7 1.9

5.2-5.3 -0.1

5.0*3.1 15.5

2.2/2.0 1.1 At least one digit must be to the right .
(2)f(;:he decimal point in the number

5.345/0.5 10.69 At least one digit must be to the left
of the decimal point in the number
0.5.

7/2 3.5 Division of INTEGERS resultsina
REAL value.

Relational Operators
Seven relational operators can be used with CHAR data. The
comparisons of the operands are performed using the ASCII
codes of the characters. Refer to appendix G in the 77-74%

- Learn Pascal Reference Guide for a list of the ASCII codes.

54

. Character Data
. Operators

';Chapter 4—Expressions

> greater than

>= greaterthanorequalto

< less than
<= lessthanorequalto
= equalto

<> notequalto

The following are examples of relational operations on REAL
data.

Operation Results
5.6>5.1 TRUE
5.5> =55 TRUE
5.5<5.1 FALSE
5.56<=5.1 FALSE
55=5.1 FALSE
5.5<>5.5 FALSE
Logical Operators

Logical operators cannot be used with REAL data.

Arithmetic operators cannot be used with character data, but
the following operators can be used.

Relational Operators

Seven relational operators can be used with CHAR data. The
comparisons of the operands are performed using the ASCII
codes of the characters. Refer to Appendix G in the TI-74
Learn Pascal Reference Guide for a list of the ASCII codes.

Some examples of using relational operators with CHAR data
are shown on the next page.

55

Chapter 4—Expressions

STRING Data
Operators

56

Operation Result

Comments

‘a’<‘'b’ TRUE

The ASCII code of a (97)is 4§
less than the ASCII code of3
b (98).

‘a’<="¢’ TRUE

The ASCII codeof a(97)is §

AT FALSE

The ASCII code of A (65)is 4
not greater than the ASCII 4
code of d (100). b |

A>="% TRUE

The ASCII code of A (65)is §
greater than the ASCI codég
of % (37).

FALSE

The ASCII code of A (65)is 3
not equal to the ASCII code?
of G(71). -

‘AT TRUE

The ASCII code of A (65)is §
not equal to the ASCII code §
of a(97). |

‘a’IN[‘a’,'b",c’,'d’] TRUE

The charactera s in the set §
of specified values. §

Logical Operators

Logical operators cannot be used with CHAR data.

Arithmetic operators cannot be used with STRING data, but
the following operators can be used.

Relational Operators

Six relational operators (<, <=,>,>=, =, and <>)canbe

used with STRING data to compare the ASCII values of the
charactersin the strings. The ordering of strings is
alphabetical (lexicographical); uppercase precedes
lowercase. A shorter string precedes a longer string if the
charactersin the shorter string are the same as the characters
inthe beginning of the longer string.

Some examples of string comparisons are shown on the next

page.

PRSI PR £

s e e

iChapter 4—Expressions

|
|
£
:

]

5 Operation Results Comments

‘Pascal —IV'="Pascal -TI’ FALSE Stringsare notthe
same

st ol el L

‘Pascal - IV'<>'Pascal -iv’ TRUE Uppercase and
lowercase letters do
not compare equal

‘Pascal -1V'<'Pascal-TI' TRUE Lexicographically I
comes before T

‘Pascal - [V'< =‘Pascal’ FALSE Alongerstring
compares greater
than a shorter string

‘Pascal -1V'>‘Pascal-4.0" TRUE Letters have a higher
ASCII code than
numbers

‘Pascal - TI'>=‘Pascal - TI’ TRUE Strings are the same

Logical Operators
Logical operators cannot be used with STRING data.

. BOOLEAN Data Arithmetic operators cannot be used with BOOLEAN data,

- Operators but the following operators can be used.
Relational Operators
> Seven relational operators (<, <=, >, >=, =, <>, and IN) can

be used with BOOLEAN values. FALSE is defined to have the
value 0, whereas TRUE is defined to have a valueof 1.
Therefore, by definition, FALSE<TRUE.

< less than returns a TRUE result if the left
operand is FALSE and right operand
is TRUE. Otherwise, a FALSE value
isreturned.

<= lessthanor returns a TRUE result if the right
equal operand is TRUE or if the left
operand is FALSE. Otherwise, a
FALSE value isreturned.

57

Chapter 4—Expressions

58

greater than

returns a TRUE result if the left
operand is TRUE and the right
operand is FALSE. Otherwise, a
FALSE value is returned.

greater thanor
equal

returns a TRUE result if the left
operand is TRUE or if the right
operand is FALSE. Otherwise, a
FALSE valueisreturned.

equal to

returns a TRUE result if the left and
right operands are both TRUE or are
both FALSE. Otherwise, a value of
FALSE isreturned.

<>

not equal to

returns a TRUE result if the left and
right operands are not the same.
Otherwise, a value of FALSE is
returned.

IN

member of

returns a TRUE result if the left
operand is an element of the right
operand (aset). Otherwise, a value
of FALSE isreturned.

Logical Operators

There are three logical operators that can be used with
BOOLEAN datatypes, AND, OR, and NOT.

AND returns a value of TRUE if the left operand and the
right operand are TRUE. Otherwise, a value of FALSE

isreturned.

OR returnsavalue of TRUEif either the left or right
operand is TRUE or if both are TRUE. If both operands
are FALSE, a value of FALSE is returned.

NOT

returns the negation of the operand followingit. A 1
value of TRUE is returned if the operand following it is |
FALSE; a value of FALSE is returned if the operandis

TRUE.

The results of using the BOOLEAN operators for all cases are

given on the next page.

Chapter 4—Expressions

Operation Results

TRUE AND TRUE TRUE

TRUE AND FALSE FALSE

FALSE AND TRUE FALSE

FALSE AND FALSE FALSE

TRUE OR TRUE TRUE
TRUE ORFALSE TRUE
FALSE OR TRUE TRUE
FALSE ORFALSE FALSE
NOT TRUE FALSE
NOT FALSE TRUE

Examples of using the logical operators with BOOLEAN data
are given below. Note that even though the operands
themselves use relational operators with integer values,
these operands have a BOOLEAN value of TRUE or FALSE.

Operation Results Comments

(3<4) AND (5<7) TRUE both operands are TRUE (3 is
less than 4 and 5 is less than 7).

(3<4) AND(5>7) FALSE oneoftheoperands(5>7)is
not TRUE.

(3<4)OR (B<T) TRUE at least one of the operands is
TRUE.

(3>4)OR (6>7) FALSE neitheroperand is TRUE.

NOT (3<4) FALSE theoperand isTRUE and NOT
TRUE is FALSE.

NOT (3>4) TRUE the operand is FALSE and
NOT FALSE is TRUE.

59

Chapter 4—Expressions

Operator
Precedence

60

When an expression is evaluated, an ambiguity may arise
when there is a sequence of operators.

For example
temp:=20-4*3

The instruction could be interpreted as

temp:=20-4*3
:=16 *3
= 48
Oras
temp:=20-4*3
:=20- 12
= 8

For you to know what results you will always obtain in an
expression, the order in which operations are performed has
been defined in programming languages. In Pascal, the
following order of precedence has been established.

O any calculation within parentheses is
computed first.

;

NOT is performed next.

*/MOD DIV AND are performed next.

+ - OR are performed next.

=<><=>=<>IN areperformed last.

If two operators of the same priority appear in an expression,
they are evaluated in left-to-right order.

In the previous example, the * (multiplication)is always
performed before + (addition). Therefore, temp :=20-4*31is
evaluated as shownbelow.

20-4*3
20-12
8

Chapter 4—Expressions

T it e Seiianaie . e e

R L el

Note that the order of precedence for operations in Pascal
differs from some programming languages. Because the
logical operator AND is performed before any relational
operation, arelational expression on either side of AND must
be enclosed in parentheses.

(5<6) AND(2<3)
TRUE AND TRUE which is TRUE.

To subtract the sum of two numbers from another number,
you must use parentheses to override the left-to-right order
of precedence. For example, to subtract the sumof 39and 7
from 40, the expression must be written as

40-(39+7)
that is evaluated as

40-46
-6

If the expression is written as
40-39+7

the expression is evaluated from left to right, 40 -39+ 7=
1+ 7=8, because —and + have the same level of precedence.

The following program accepts temperatures in degrees
Fahrenheit and converts them to degrees Celsius. Note that
the expression contains terms in parentheses that are
operated on first. The division and multiplication are
performed from left to right.

100 PROGRAM tcelsius;

110 VAR fahdeg:REAL;

120 BEGIN

130 WRITE('Enter deg: ') {$w-};

140 READLN(fahdeg) {$w+};

150 WRITELN(fahdeg, 'deg F. = ',
(fahdeg-32)%5/9,' deg C.")

160 END. (* tcelsius *)

Input: 98.6
Output: 98.6 deg F.= 37.0 deg C.

61

Chapter 4—Expressions

Forming -
Expressions

62

You can form expressions by combining constants, variables, &
and functions (described in the next section) with any

operators that are valid for the type of constant, variable,
and function you are using. The following conventions apply &
to expressions. i

* An expression can be a single constant or variable, which
may be preceded by a unary plus or minus.

¢ An expression can be a sequence of variables, constants,
and/or functions separated by operators. The variables, 4
constants, and functions are called terms of the expression. #

* Two operators cannot be adjacent to each other.
Parentheses must be used to separate operators.

For example, to multiply 12 by a — 7, you must write
12 * (- 7). In Pascal, 12* - 7 is not allowed.

+ A function may replace any variable or constant.

In Pascal, all of the constants, variables, and values of
functions used in an expression must be of the same type. For #
example, all variables, constants, and results of functionsin }
an integer expression must be integers. All variables, i
constants, and results of functions in a real expression should &
be real. Note, however, that if an integer valueisusedina 3
real expression, it is converted into a real type.

If the variable count is declared tobe INTEGER, the
examples

count + 1 count DIV 5
count + 10 count MOD 4
count*10

are illustrations of valid integer expressions.
Some invalid integer expressions are shown below.

count+1.0 an integer and a real added together produce

arealresult 4
count/5 /is the symbol of division for real data and the ;

result is a real value 3
3*-4 two operators together

Chapter 4—Expressions

o i A e

Functions

If the variables average and rate are declared tobe REAL,
the following examples are illustrations of valid real
expressions.

average +5.0

average + 10 theinteger 10isconverted to areal number
average/3.0

average*rate

Some examples of invalid real expressions are shown below.

average +-3 two operators together
average DIV5 DIV can be used only with integer operands
average/.b no digit before the decimal point

Because of the way numbers are stored internally in the
TI-74, operations performed on real numbers may not yield
an exact value. For example, the fraction 1/3 isrepresented
by a finite number of decimal digits, 0.33333333333333.
After many operations are performed on a real value, the
error due to truncation or to the rounding off of the result can
become large in some cases.

In most cases, the approximation of the result is insignificant.
However, you should not test real values for equality;
instead, test that the difference between two real values is
less than a specified amount. For more information on
numerical accuracy, refer to appendix Hin the TI-74 Learn
Pascal Reference Guide.

A function is a specialized routine that performs a
computation and returns a value. In Pascal there are both
standard functions and user-defined functions. User-defined
functions are discussed later in chapter 7.

The standard functions available in Pascal are represented by
a standard identifier usually followed by an operand (called

‘an argument) enclosed in parentheses.

Some functions require that an argument be an expression of
aspecific data type; other functions use arguments that can
be expressions of any data type. Some functions require an
argument be an expression that is ordinal, a category that
includes INTEGER, CHAR, and BOOLEAN types.

Inthis manual, the data type of an argument isrepresented as
shown onthe next page.

63

Chapter 4—Expressions

Integer Functions

64

integer-expression INTEGER expression
real-expression REAL expression
torr-expression INTEGER or REAL expression
string-expression STRING expression
char-expression CHAR expression
bool-expression BOOLEAN expressicn
multi-expression multiple types of expressions

You use functions like variables in a program except that you ;
cannot place a function name on the left side of an
assignment operator (: =). When a statement containinga
function name is executed, the value of the function is
returned and used in place of the function name. The .
argument of a function does not always have to be the same
data type as the value it returns.

Because each value in Pascal has a specified data type, a
function must be used with the same data types as the valueit
returns. In this manual, the functions are grouped by the type
of the value they return.

A function cannot be used alone as an imperative; it can,
however, be part of an imperative (such asa WRITELN
statement).

The following standard functions, classified as numeric,
memory, string, and ranking, return an INTEGER value.

Numeric
The numeric functions operate on numeric values.

ABS(integer-expression) returns the absolute value of
the integer-expression.

SQR(integer-expression) returns the square of the
integer-expression.

TRUNC(real-expression) returns the integer portionof |
the real-expression.

ROUND(real-expression) returns the integer that is
nearest the real-expression. lf
the fractional part of the
expression is exactly 0.5, the
result is rounded up if real-
expression is positive or down
if real-expression is negative.

hapter 4—Expressions

The examples below return the INTEGER value shown.

Operation Result Comment

ABS(-7) 7

ABS(12) 12

SQR(7) 49 (7*7)

SQR(-4) 16 (-4)*(-4)

TRUNC(12.2) 12 TRUNC discards the fractional
part.

TRUNC(-12.3) -12

ROUND(7.2) 7 ROUND rounds to the nearest
integer

ROUND(7.8) 8

ROUND(7.49999) 7

ROUND(7.5) 8 ROUND rounds up to the
nearest integerif the
fractional partis 0.5 and the
number is positive.

ROUND(-7.5) -8 ROUND rounds down to the

nearest integer if the
fractional part is 0.5 and the
number is negative.

ROUND(-7.499999) -7

Memory
The memory functions are used for information about
memory usage.

Chapter 4—Expressions

MEMAVAIL
returns the number of unallocated bytes in main
memory.

SCAN(integer-expression,<> char-expression, multi-
expression)
SCAN(integer-expression, = char-expression, multi-
expression)

scans memory comparing each byte with the ;
character specified by char-expression. If an equal
sign (=) precedes char-expression, the search is
made for the first character that is the same as char
expresston. If the unequal symbol (<>) precedes
char-expression, the search is made for the first
character thatis different from char-expression.
Integer-expression specifies the maximum number
of bytes that can be searched. The value returned is
the number of bytes searched minus 1. If integer-
expression is negative, a backwards search is made
and the value returned is the negative of the
number of bytes searched. If the first byte satisfies
the search, the value returned is 0; if the second
byte satisfies the search, the value returned s 1, an
so on. If no match or mismatch is found, the value
returned is integer-expression. The search through’
memory begins at the location specified by multi-
expression.

SIZEOF(multi-expression)
returns the number of bytes the variable specified
by multi-expression takes up in memory. Multi- |
expression can be an identifier or one of the ‘
predefined data types.]
|

For example, the number of bytes used for each data type ¢
be determined by using the SIZEOF function in imperatives af

shown below. ’
Imperative Result Displayed :
WRITELN(SIZEOF(INTEGER)); 2 |
WRITELN(SIZEOF(REAL)); ' 8

66

“hapter 4—Expressions

Imperative Result Displayed
WRITELN(SIZEOF(CHARY)); 1
WRITELN(SIZEOF(STRING)); 81
WRITELN(SIZEOF(BOOLEAN)); 1

The program

100 PROGRAM exscan;

110 VAR bytes,storage,location: INTEGER;

120 strl1:STRING;

130 BEGIN

140 bytes:=MEMAVAIL;

150 strl:="T|-74 Pascal is a subset of UCSD

Pascal ' ;

160 storage:=SIZEOF (strl);

170 location:=SCAN(39,="'U’,strl[1]);
180 WRITELN('location = ', location);
190 END. (* exscan *)

displays the following.
location = 28

The following information is stored in the variables.

bytes the number of bytes of memory that are
available.

storage thenumber of bytesof memory that str1l usesin
memory.

location thenumber of bytes(minus 1) that the
interpreter searched until it found a character
equal to (or the same as) the character U. The
search starts at the first characterinstr1 and
can continue for up to 39 bytes.

In this case, 29 bytes are searched until the
character U is found. Thus the variable
locat i onisassigned a value of 28.

67

Chapter 4—Expressions

You can display the contents of the variables by tes,
storage, and | ocat ion by using the following WRITELN
imperatives.

WRITELN(bytes);
WRITELN(storage);
WRITELN(location);

Note: In versions of Pascal written for 16-bit processors,

MEMAYVAIL returns the number of unallocated 16-bit words

in memory.

String
The string functions are used with strings.

LENGTH(string-expression)
returns the current length of the string specified by
string-expression.

POS(string-expressionl string-expression?)
returns the position (searching from left to right)in
string-expression where the substring string-
expressionl begins. If string-expressionl cannot be
found within string-expression2, POS returns 0. If
string-expressionl occurs more than once within
string-expression2, POS returns the first
occurrence.

For example, the program

100 PROGRAM exstr;
110 VAR strl,str2:STRING;

120 position: INTEGER;

130 strlenth: INTEGER;

140 BEGIN

150 str2:="T1-74 Pasca! is a subset of UCSD Pascal’;
160 strl:="subset of UCSD Pascal';

170 position:=POS(strl,str2);

180 WRITELN('position = ',position);

190 strlenth:=LENGTH(str2);

200 WRITELN('strtenth = ' strlenth);

210 END. (™ exstr *)

68

pter 4—Expressions

ﬁ displays the following.
: position = 19
strienth = 39

e

The variable pos i t i on contains the first occurrenceof strl
(subset of UCSD Pascal)instr2(TI-74 Pascal is a
subset of UCSD Pascal). The variablestrlenth
contains the number of charactersin str2.

SR N SR e S

Ranking
The ranking function is used to determine the position of its
expressionin its set of values.

ORD(multi-expression)
returns the ordinal value (or the rank) of multi-
expression, which can be any type except REAL or
STRING. The ORD of an INTEGER data type is that
integer value. The ORD of a CHAR data typeisthe
character’s ASCII code. The ordinal value of FALSE
is0; the ordinal value of TRUE is 1.

R G

Some examples of using the ORD function are shown below.

Operator Result Comments

ORD(‘p") 112 The ASCIl codeof pis 112.

ORD(FALSE) 0 The first value in a set hasan
ordinal value of 0.

ORD(-5) -5 The ordinal of an integer is the
integer itself.

ORD(‘E")-1 68 68isthe ORD(‘D’)

ORD('M")+1 78 78 isthe ORD(‘N’)

The following functions return a REAL value.

ABS(real-expression)
‘returns the absolute value of the real-expression.

69

Chapter 4—Expressions

70

ATAN(iorr-expression)
returns the measurement of the angle in radians
whose tangent is the integer- or real-expression.

COS(zorr-expression) :
returns the cosine of the angle whose measurement 3
in radians is the integer- or real-expression.

EXP(iorr-expression)
returns the result of e* where x is the integer- or
real-expression.

LN(Z{orr-expression)
returns the natural logarithm of the integer- or real-§
expression.]

LOG(iorr-expression)
returns the common logarithm of the integer- or
real-expression.

PWROFTEN(integer-expression)
returns 10 raised to the power specified by the
integer-expression, which must be from 0 through
37.

SIN(Zorr-expression)]
returns the sine of the angle whose measurementin-
radiansis the integer- or real-expression.

SQR(real-expression)
returns the square of the real-expression.

SQRT(iorr-expression)
returns the square root of the integer- or real-
expression.

Some examples of these real functions are shown below.

Fuanction Result Comments

ABS(-4.5) 4.5 ABSalwaysreturnsa
positive value or zero

ATAN(4.5) 1.352127381 returns angle measured §
in radians

- Chapter 4—Expressions

Function Result Comments
CO0S(4.5) -0.2107957994 returns cosine of 4.5
radians
EXP(4.5) 90.0171313 €4%is90.0171313
LN(4.5) 1.504077397
LOG(4.5) 0.6532125138
PWROFTEN(4) 10000.0 10%is 10000.0
SIN(4.5) -0.9775301177 returnssine of 4.5
radians
SQR(4.5) 20.25 4.5%i520.25
SQRT(4.5) 2.121320344 Va5
 Character The following function returns a character.
Function
CHR(integer-expression)

returns the character that corresponds to the
ASCII code of integer-expression.

Some examples of using the CHR function are shown below.

Operation Result
CHR(38) &
CHR(58)

CHR(62) >
CHR(90) Z

CHR(98) b

Chapter 4—Expressions

String Functions

72

The following functions return a string. |

|

CONCAT(string-expressionl, string-expression2, string-
expressiond, ... string-expressionn)

i
returns the string that is all the string expressions :
(string-expressionl, string-expression2, ... string- |
expressionn) concatenated or linked together. If the %
string returned by CONCAT is assigned to astring
variable whose declared (or default) lengthisless |
than the concatenated string, the message ‘g
Truncation warningisdisplayed. The string §
assigned to the string variable has a length the same
asthe declared (or default) length of the variable. 1,

COPY(string-expression,integer-expressionl, integer-
expression?)

returns a substring of a string expression. The
substringincludes the characters in string-
expression starting at the position specified by
integer-expressionl and continuing for integer-
expression characters. If the length specified by
integer-expression?istoo long, the COPY function
is not performed.

The program 1
100 PROGRAM excopy; 1
110 VAR exl.ex2,ex3:STRING;]
120 stringex,substrin:STRING; i
130 BEGIN j
140 exl:="T"; ;
150 ex2:="1-74 Pascal is a subset of
160 ex3:="UCSD Pascal’; 1
170 stringex:=CONCAT (ex1,ex2,ex3); g
180 substrin:=COPY(stringex,19,21); 2
190 WRITELN(stringex); ;
200 WRITELN(substrin); ‘

210 END. (* excopy *)

concatenates the strings ex1, ex2, ex3 and copies 21 of the 3
characters in the concatenated string starting at position 19. %
The following output is produced.

T1-74 Pascal is a subset of UCSD Pascal
subset of UCSD Pascal

Chapter 4—Expressions

Boolean Functions The following functions return a BOOLEAN value of TRUE or

Multi-Type
Functions

FALSE.

ODD(integer-expression)
returns a TRUE when the integer expression is odd
ora FALSE when the integer expression is even.

EOF
returns a value of TRUE or FALSE regarding the
end-of-file marker.

EOLN
returns a value of TRUE or FALSE regarding the
end-of-line marker.

The EOF and EOLN functions are described later in ‘‘File
Handling.”

The following functions can have expressions that are
INTEGER, CHAR, or BOOLEAN; the data type of the value
returned is dependent on the data type of the expression. A
REAL or STRING data expression cannot be used.

PRED(multi-expression)
(predecessor function) returns the value that
precedes the value specified by multi-expression.

SUCC(multi-expression)
(successor function) returns the value that succeeds
the value specified by multi-expression.

For example,

PRED('B")is A
SUCC('E")isF
PRED(5)is 4
SUCC(5)is 6
PRED(TRUE)is FALSE

[f the expression of the PRED function has no preceding
value, an error occurs when the function is executed.
Likewise, if the expression of the SUCC function has no
successor value, an error occurs when the function is
executed.

Chapter 4—Expressions

Data Type
Formats

Unformatted Data

74

TYPE Declarations You can use the VAR declaration to declare variables that are |

any of the predefined data types (INTEGER, REAL, STRING,
CHAR, and BOOLEAN). When you declare many variablesof
the same type, you can help yourself remember their usesby
defining them with descriptive identifiers. An identifier can

be declared in a TYPE statement as a user-defined type that is
one of the predefined data types.

For example, the identifier grade can be declared a user-
defined type that is the predefined CHAR type. Asshown
below, variables can then be declared in a VAR declaration to
be that user-defined type.

Declaring an identifier as a REAL type is shownbelow.

130 TYPE angle=REAL;
140 VAR degree:angle;
150 radian:angle;
160 grad:angle;

You can also declare that the type of anidentifieristobea
user-defined type. In the example below, the identifier
measure is defined to be of the user-defined type angle.

130 TYPE angle=REAL;

140 measure=angle;
150 VAR degree:angle;
160 radian:angle;
170 grad:measure;

Note that a TYPE declaration does not allocate memory for
the identifier it is defining to be used as a variable. The VAR
declaration must be used to allocate space for variables.

In Pascal you can display data unformatted or you can specify
the format for the data.

In TI-74 Pascal, no leading or trailing spaces are displayed
with any unformatted item. Anitem of CHAR data type is
displayed in one column. A STRING item is displayed in the
number of columns required for the current length of the
string.

A REAL dataitem is displayed in decimal notation if its value ;
has 10 or less digits to the left of the decimal point. If the
value has more than ten significant digits, the value is
rounded. In Pascal, an item displayed in decimal notation
always has at least one digit to the left of the decimal point
and at least one digit to the right of the decimal point.

Chapter 4—Expressions

A REAL data item with a magnitude of 9999999999.49996 or
greater is displayed in scientific notation as shown below.

mantissaEexponent

Anitem is displayed in scientific notation according to the
following conventions.

* The mantissa is displayed with 7 or fewer digits with one
digit to the left of the decimal point and at least one digit to
the right of the decimal point.

» Trailing zeros are omitted in the fractional part of the
mantissa.

¢ The exponent is displayed with a plus or minus sign followed
by a two- or three-digit exponent.

» When the exponent has two digits, the mantissa is limited to
seven digits; when the exponent has three digits, the
mantissa is limited to six digits. When necessary, the
mantissa is rounded to the appropriate number of digits.

For example, the values 123456789012.3456789 and
—0.0000009876543210 are displayed as shown below.

Value Scientific Notation

123456789012.3456789 1.234568E + 11

-0.0000009876543210 —-9.876543E - 07

The statements

210 address:='2301 Ash #39°';

220 count:=135;

230 grade:='a';

240 result1:=3940.7125;

250 WRITELN(address,count,grade,result);

produce the following output.

2301 Ash #39135a3940.7125

Chapter 4—Expressions

Formatted Data

76

You can design the format of the output data by includinga
width specification next to each data item in an output
statement. The width specification is the number of columns
that are to be used to display the item. An item is formatted
when it is followed by a colon and an integer expression that
specifies the field width. If an item requires fewer columns
than are specified, the item is displayed right-justified with
leading blanks.

If the WRITELN statement in the above example is changed
to

250 WRITELN(address:13,count:6,grade:2,result:
10);

the output that is produced is
2301 Ash #39 135 a 3940.7125

If an item requires more columns than are specified, the item
is displayed in the number of columns necessary.

For example, the output statement

260 WRITELN(address:10,count:2,grade:2,result:
4),

produces the following output.
2301 Ash #39135 a3940.7125

Because the field-width specifications for address, count,
and result aretoo small, the items are displayed in the
number of columns necessary to display their values.

For a REAL data item, you can also specify the number of
digits to be displayed after the decimal point by including a
colon and an integer-expression after the field-width
specification. The value is then rounded to the specified
number of decimal digits and displayed. For example, the
statement

270 WRITELN(address:13,count:6,grade:2,result:
10:2); ’

produces the output

2301 Ash #39 135 a 3940.71

Chapter 4—Expressions

For INTEGER and REAL data, the field-width specification
must allow a column for a negative sign. In addition, for
REAL data the field-width specification must allow a column
for the decimal point.

The output displayed from various WRITELN statements is

shown below.
Statement Display Comments
200 WRITELN(3940.7125); 3940.7125 unformatted item
| 210 WRITELN(3940.7125:4); 3940.7125 unformatted because field-
width is too small
220 WRITELN(3940.7125:5); 3940.7125 unformatted because field-
width is too small
+ 230 WRITELN(3940.7125:10:2); 3940.71 displayed right-justified in 10
columns and rounded to 2
; decimal places
240 WRITELN(3940.7125:10:3); 3940.713 displayed right-justified in 10
1 columns and rounded to 3
decimal places

250 WRITELN(3940.7125:10:4); 3940.7125 displayed right-justified in 10
3 columns and rounded to 4

_ decimal places

.—'1260 WRITELN(- 3940.7125:4); ~-3940.7125 unformatted because field-

L width is too small

260 WRITELN(— 3940.7125:5); -3940.7125 unformatted because field-

3 width is too small

970 WRITELN(-3940.7125:10:3); -3940.713 displayed right-justified in 10

columns with 3 decimal places

77

Chapter 4—Expressions

Positioning the
Cursor

78

The maximum field-width specifications for TI-74 Pascal is
shown in the table below.

Data Type Maximum Field-Width Specification

INTEGER 80
REAL 14
CHAR 1
STRING 80

Note: You candisplay a string with a length greater than 80
by using no format specification. The string is displayed 80
characters at a time. The ENTER Key can be pressed to
display the next 80 characters in the string until the end of
the stringisreached.

You can position the cursor anywhere in the display by using
the GOTOXY statement. The general form of the GOTOXY
statement is

GOTOXY (col,row); 3

where colisan integer expression that indicates a column and 4
row is an integer expression that indicates arow. The upper-
left corner is assumed to be (0,0). For the T1-74, the column
specification must be in the range 0-30 and the row
specification must always be 0.

If an invalid column or row specification is specified, zero is
used for that specification and the warning Implementation
restrictionisdisplayed. If the other specification is valid,
GOTOXY usesit. If both the column and row specifications
are out of bounds, two warnings are displayed and the cursor
is placed at (0,0).

Any subsequent input/output begins at the location specified
by the GOTOXY statement. For example, the following
program

100 PROGRAM cursor;

110 VAR code: INTEGER;

120 BEGIN

130 WRITE('Enter code (1-5): ') {3$w-};
140 GOTOXY(19,0);

\Chapter 4—Expressions

Review
Chapter 4

150 READLN(code) {$w+};
160 GOTOXY (30,0);

170 WRITELN(code) ;

180 END. (* cursor *)

prompts for a code to be entered, which is then read at
column 19 and displayed in column 30.

1. Ifyouareusinga VAR, a CONST, and a TYPE declaration,
write the declarations in the order in which they must
appear in a Pascal program.

2. From the constant declarations below, what are the types
for the variables being assigned?

CONST

e=FALSE;

3. Which of the following are not valid REAL valuesina
Pascal program and why are they not valid?

7.567 EO1

.5

4.5

12.

35.7654

+3.94567e - 04

Chapter 4—Expressions 4

80

After the following statements are executed, what are
the valuesof aand b?

a:=5;
b:=10;
a:=b;
b:=a;
a

b

Given the following variable declarations

VAR a:INTEGER;
b:REAL;
c:CHAR;
d:STRING;

when the statement READ(a,b, ¢, d) ; isexecuted and
the following data input, what are the valuesof a, b, c,
and d?

1234 35.5, the end,

a

b

C

d

What is the output from each of the following

statements?

WRITELN(83.545:4) ;

WRITELN(83.545:5:1);

WRITELN(83.545:7:2);

WRITELN(83.545:8:4);

WRITELN(-83.545:7:4);

WRITELN(-83.545:5);

e

Bhapter 4—Expressions

10.

11.

WRITELN(-83.545:2:0);

WRITELN(83.545:2) ;

What is the type and the result of each of the following
expressions?

Example Result Type

3+5

5/2

11DIV2

5.6<5.8

3*5.5

3IN[O..5]

11 MOD 2

‘hello'< HELLO’

Write a program that reads a string, displays the length of
the string, scans the string for the letter z, and displays
the result of the scan.

Write a program that reads two strings and uses the POS
function to determine if one of the strings is a substring of
the other string and then displays the results of the POS
function.

Write a program that reads an integer and a character and
displays the predecessor and the successor of each.

Write a program that accepts a temperature in degrees
Celsius, converts it to degrees Fahrenheit, and displays
the result. To convert degrees Celsius to degrees
Fahrenheit, multiply the Celsius temperature by 9/5 and
add 32.

81

Chapter 5—Flow of Control

Introduction The statements in a program are normally executed
sequentially from the first statement to the last. Executing
each statement in the order that it appears on the program
listing is known as sequential execution. You can change the
orderin which the statements are executed by using control
statements.

In Pascal, there are three classes of control statements.

« Conditional Branch Statements

« Repetition Statements j
* Unconditional Branch Statements "

;i
Repetition Repetition statements are used when a section of a program is%
Statements to be repeated a number of times. The program lines that are

repeated are known as a loop. By using repetition statements,;

you can avoid duplicating lines.

For example, suppose you want to input three numbers from

the keyboard and then display their sum. A program that uses
sequential execution to input three numbers and print their
sum is shown below.

100 PROGRAM add3; (*program to add 3 numbers*) |
110 VAR next,sum: INTEGER; J
120 BEGIN

130 sum:=0;

140 WRITE('Enter #: ') {$w-},

150 READLN(next) ;

160 sum:=sum+next;

170 WRITE(Enter #: '),

180 READLN(next);

190 sum:=sum+next

200 WRITE('Enter #: ');

210 READLN(next) ;

220 sum:=sum+next {$w+}.:

230 WRITELN('Sum is ', sum);

240 END. (* add3 *)

If the program is supplied the three numbers
36

7

19

the program’s final output is

Sum is 62
82

“Chapter 5—Flow of Control

‘The FOR
Statement

By using a repetition statement you can eliminate some
program lines. There are three kinds of repetition statements:
the FOR statement, the REPEAT statement, and the WHILE
statement.

The FOR statement repeats a portion of a program a specific
number of times. The FOR statement uses a counter that is
incremented by one each time the loop is performed. This
counter is also called a control variable. You must supply the
starting value and the ending value of the counter.

The general form of the FOR statement is shown below.
FOR counter:=start TO stop DO statement

The previous program can be written with a FOR statement as
shown below.

100 PROGRAM add3; (*program to add 3 numbers*)
110 VAR next,sum,count: INTEGER;

120 BEGIN

130 sum:=0; {$w-}

140 FOR count:=1 TO 3 DO

150 BEGIN

160 WRITE('Enter #: ');
170 READLN(next) ;

180 sum: =sum+next

190 END; (* count *)

200 { Sw+}

210 WRITELN('Sum is ’,sum)
220 END. (* add3 *)

When a FOR statement is first executed, the counter is
assigned the value of the starting value. In this program, the
counter is the identifier count, which has been defined asan
INTEGER variable. Count begins with a value of 1.

The FOR statement instructs the computer to perform the
next statement after the word DO as many times as the
counter specifies. If one statement follows the reserved word
DO, only that statement is executed in the loop. If the
reserved word BEGIN follows the reserved word DO, all of
the statements between this BEGIN and its matching END are
treated as a single compound statement and are executed in
the loop.

83

Chapter 5—Flow of Control

84

Note there is no semicolon after the reserved word DO ina ;
FOR statement. The FOR statement performs the statements
after the reserved word DO. A semicolon before an END

statement is optional; a semicolon after the END statement @
the loop is required to separate it from the next statement. j

Ina FOR statement, the loop is executed and the counteris i
incremented by one. The loop is executed repeatedly until
the value of the counter is greater than the ending value. In§
the preceding example, the loop is performed three times §
before the computer executes the next statement.

The control variable of a FOR statement can also be

decremented by one using the reserved word DOWNTO
instead of TO.

The general format for using DOWNTO in a FOR statement is§i
FOR counter:=start DOWNTO stop DO statement

The program

100 PROGRAM exdownto;

110 VAR count: INTEGER;

120 BEGIN

130 FOR count:=3 DOWNTO 1 DO

140 WRITE (count,’ ");
150 END. (* exdownto ™)

displays the values of the counter.
321

In Pascal, the counter can be an INTEGER, CHAR, or
BOOLEAN variable. For example, the program

100 PROGRAM countval;
110 VAR count:CHAR;

120 BEGIN
130 FOR count:="A’"TO'G' DO
140 WRITELN(count,' Fabrics :");

150 END. (* countval *)
diSplays the following output.
A Fabrics

B Fabrics
C Fabrics

“hapter 5—Flow of Control

D Fabrics
E Fabrics
F Fabrics
G Fabrics

The starting and stopping values can also be variables or
expressions. In the program below, the computer prompts for
the starting and stopping values to be entered from the
keyboard. The starting and stopping values are evaluated
when the FOR statement is first executed.

100 PROGRAM forvalue;
110 VAR startval, stopval,count: INTEGER;

120 BEGIN
130 WRITE('enter starting integer: ')
{$w-};

140 READLN(startval);

150 WRITE ('enter stopping integer: '):

160 READLN (stopval) {$w+};

170 FOR count:=startval TO stopval DO

180 WRITELN(count,’ squared is
SQR(count));

190 END. (* forvalue *)

If -1isentered as the startinginteger and 3 isentered asthe
stopping integer, the program produces the following output.

-1squaredisl

OsquaredisO

1squaredisl

2 squared is 4

3squaredis9

The following conventions apply to a FOR statement.

* The value of the control variable can be used for
computations within the compound statement, but the
value of the control variable cannot be modified.

» The starting value and the stopping value for the control
variable cannot be changed within the compound
statement. The control variable, the starting value, and the

stopping value must be of the same type (usually INTEGER,
but may be any predefined type except REAL or STRING).

85

Chapter 5—Flow of Control

The REPEAT
Statement

86

o [f TO is used and the starting value is greater than the
stopping value, the FOR statement is not executed. If
DOWNTO is used and the stopping value is greater than the
starting value, the FOR statement is not executed. 4

o If the starting value equals the stopping value, the
statement is executed once.

¢ The control variable must be a local variable; it cannot bea
VAR parameter (described later in chapter 7). 4

+ After a FOR statement has executed, the value of its controlt
variable is undefined.

Another statement that can be used in Pascal to form a loop is
the REPEAT statement. The general format of a REPEAT
statement is shown below.

REPEAT statement UNTIL Boolean-expression

The REPEAT statement performsall the statements 1
following the reserved word REPEAT down to the reserved |
word UNTIL and then tests the Boolean-expression after the
word UNTIL. If the Boolean-expression is FALSE, the
statements between REPEAT and UNTIL are performed
again and the expression is tested again. This process is
repeated as long as the Boolean-expression is FALSE. When |
the expression becomes TRUE, the loop is no longer]
performed and the statement following it is executed.

A REPEAT loopis always executed at least once because the
Boolean-expression is tested after the loop has been
executed.

Suppose you are loading boxes in a van that can hold up to
1900 pounds. The following program can be used to add the
box weights one at a time until the total weight exceeds 1900
pounds.

100 PROGRAM maxweigh;

110 CONST max imum=1900.0;
120 VAR count: INTEGER;

130 weight,totalwt :REAL;
140 BEGIN

150 totalwt:=0.0;

160 count:=0; {%$w-}

Chapter 5—Flow of Control

170 REPEAT

180 WRITE('Enter box weights:');
190 READLN(weight) ;

200 totalwt:=totalwt+weight;

210 count:=count+l;

220 UNTIL totalwit>maximum; {3$w+}

230 WRITELN(' Last box exceeded max.');

240 WRITELN(count,' boxes have exceeded’,
maximum:10:1,".")

250 END. (* maxweigh *)

The REPEAT loop executes the statements from REPEAT to
UNTIL until the total weight of the boxes is greater than the
maximum allowed.

Note that you can enclose the statementsina REPEAT-loop
with BEGIN and END, but they are unnecessary.

Another form of loop statement is the WHILE statement. The
general form of a WHILE statement is shown below.

WHILE Boolean-expression DO statement

A WHILE statement tests the Boolean-expression after the
word WHILE. If the Boolean-expression is TRUE, the
statement after the word DO is performed and the Boolean-
expression is tested again. This process is repeated as long as

: the expression is TRUE. When the Boolean-expression is

3 FALSE, the loop is not performed and the statement after the
WHILE loop is executed.

Gl b o

If multiple statements are to be executed in the loop, they
must be bracketed together into a single compound statement
4 by the words BEGIN and END. The Boolean-expression used
to control the loop is written before the loop, and thus there is
no natural terminator for the loop (as there isin the REPEAT
statement).

The previous example could be written usinga WHILE
statement as shown below. The difference between the two
programs is that WHILE tests the Boolean-expression before
the loop is executed. If the condition is FALSE to begin with,
the loopis not executed. In a REPEAT statement, the loop is
executed before the Boolean-expressionistested.

87

T

Chapter 5—Flow of Control

88

100 PROGRAM maxweigh;

110 CONST max imum=1900.0;

120 VAR count: INTEGER;

130 weight, totalwt:REAL;
140 BEGIN

150 totalwt:=0.0;

160 count:=0; {$w-}

170 WHILE totalwt<=maximum DO

180 BEGIN 3
190 WRITE('Enter box weights:'); 4
200 READLN(weight) ;

210 totalwt:=totalwt+weight; 3
220 count:=count+l; ‘
230 END; {$w+} i

240 WRITELN('Last box exceeded max.');

250 WRITELN(count-1, 'boxes within ',
maximum:10:1,’ max.')

260 END. (* maxweigh *)

The Boolean-expression in a WHILE statement is the inverse
of the one in a REPEAT statement. The WHILE loop is)
performed so long as the weight is less than or equal to the
maximum; the REPEAT loop is performed until the welghtxs
greater than the maximum. k

The following table summarizes the differences between the’
REPEAT and WHILE statements. k

REPEAT WHILE

The loop statement is The loop statement may not ;
performed at least once. be performed at all.

The loop is repeated only The loop is repeated only
while the Boolean- while the Boolean-
expressionis FALSE. expression is TRUE.

The reserved words REPEAT The reserved words BEGIN
and UNTIL bracket the loop and END are used

statements into a single to bracket multiple loop
compound statement. statements into a single
compound statement.

“hapter 5—Flow of Control

Nested Loops

In Pascal, you can have a loop appearing as part of a
statement within another loop. A loop embedded (or inside)
another loop is called a nested loop. Any number of loops may
be embedded within a loop until a program uses all of the
available memory.

The following program displays a multiplication table for
integers from one through nine. The first FOR-loop control
variable is used as the INTEGER value for each of the rows.
The second FOR-loop is embedded or nested inside the first
FOR-loop and its control-variable is used as the INTEGER
value for each of the columns. Thus, the outer FOR-loop
control-variable specifies arow value that is multiplied by the
inner FOR-loop control-variable, which specifies each
successive column value. The nine products for each row are
displayed.

100 PROGRAM table;

110 VAR countl,count2: INTEGER;

120 BEGIN

130 WRITELN(' Multiplication table: 1-9");
140 FOR countl:=1 TO 9 DO

150 BEGIN {$w-}

160 FOR count2:=1 TO 9 DO
170 WRITE (countl*count2:3);
180 WRITELN {$w+};

190 END;

200 END. (* table *)

The program on the next page uses a FOR, a REPEAT, and a
WHILE loop to compute the windchill factor for a given
temperature. The following variables are assigned values
from the keyboard.

nooftemp the number of temperatures tobe entered (1-5)
velocl the starting value of the velocity of the wind
veloc2 the ending value of the velocity of the wind
wincremt the wind velocity increment

tempture thetemperature in degrees Fahrenheit

The program calculates and displays the windchill factor for
the given temperature from the starting wind velocity to the
ending wind velocity using the specified increment. The

program is performed until the number of temperatures
specified has been entered.

89

Chapter 5—Flow of Control

100 PROGRAM windchil;
110 VAR nooftemp,wincremt: INTEGER;

120 tempture,velocl,veloc2, tempvel : INTEGER;
130 count: INTEGER;

140 wcfactor:REAL;

150 BEGIN {$w-}

160 REPEAT

170 WRITE('# of temperatures (1-5): ');
180 READLN(nooftemp) ;

190 UNTIL nooftemp IN[1..5];

200 WRITE(' from ? mph of wind: ');
210 READLN(velocl);

220 WRITE('to ? mph of wind: ');
230 READLN(veloc?2);

240 WRITE('Enter wind increment: ');
250 READLN(wincremt) ;

260 FOR count:=1 TO nooftemp DO

270 BEGIN

280 tempvel :=velocl;

290 WRITE('deg fahrenheit: ');

300 READLN (tempture); {$w+}

310 WHILE tempvel<=veloc2 DO

320 BEGIN

330 wcfactor:=91.4-(0.288*SQRT (tempvel)+0.45-
340 0.019*tempvel)*(91.4-tempture);

350 WRITELN(tempture,CHR(223) ,tempvel:5, 'mph=wcf’
360 wcfactor:5:0,CHR(223));

370 tempvel :=tempvel+wincremt;

380 END; (* tempvel<=veloc2 *)

390 {$w-}

400 END; (* count *)
410 END. (* windchil *)

When a Boolean-expression is constructed, be sure that the -
testis a valid one. For example, in the following program to
print the positive evenintegersless than 11, the loop never j
stops because the control variable never hasa valueof 11.

100 PROGRAM evensum;
110 VAR count: INTEGER;

120 BEGIN
’ 130 count :=2;
140 WHILE count<>11 DO (* infinite loop *)
150 BEGIN
160 WRITE (count) ;

90

“hapter 5—Flow of Control

Conditional
Branch
Statements

The IF Statement

170 count :=count+2;
180 END (* while count <>11 *)
190 END. (* evensum *)

Conditional branch statements are used to test Boolean-
expressions and, depending on the results of the test, to
execute a specific part of a program. Pascal provides two
kinds of conditional branch statements: the IF statement for
binary choices, and the CASE statement for multiple choices.

The IF statement is used when you have to decide between
two options. The IF statement can take two forms.

|F Boolean-expression THEN statement
or
IF Boolean-expression THEN statement ELSE statement
In the first form, if the Boolean-expression is TRUE, the
statement that follows the reserved word THEN is executed.
If Boolean-expressionis not TRUE, the statement following
THEN isignored and the next statement is executed.
IF age>18 THEN WRITELN('eligible for prize’);
IF charactr='*' THEN READLN;
IF final<60 THEN grade:="F"';
In the second form, if the Boolean-expression is TRUE, the
statement following THEN is executed and the ELSE part is
ignored. If the Boolean-expression is FALSE, the statement
following ELSE is executed and the THEN part isignored.
|F age>18

THEN WRITELN('eligible for prize')

ELSE WRITELN(’ ineligible for prize');
IF charactr="*’

THEN READLN

ELSE sum:=sum+1;
IF final<60

THEN grade:='F' :
ELSE WRITELN(' You passed’');

91

Chapter 5—Flow of Control

92

Note that an IF-THEN-ELSE statement is a single statement
that contains two parts. A semicolon, which isa statement
separator, must not immediately precede the reserved word
ELSE; otherwise, the ELSE part would not be considered pa;
of the IF statement. A semicolon is placed at the end of an IF:
THEN-ELSE statement to separate it from the next
statement.

When multiple statements follow the word THEN or ELSE,
the statements must be enclosed in the reserved words
BEGIN and END.

The following program accepts a sequence of prices and
computes their total. The sequence is terminated when a zer
price is encountered. If the total cost is greater than $100, a
discount of 15% is given.

100 PROGRAM iftest;

110 VAR price,total :REAL;

120 BEGIN

130 total:=0.0;

140 WRITE(Amount: ') {$w-};
150 READLN(price);

160 WHILE price<>0.0 DO

170 BEGIN

180 total:=total+price;

190 READLN(price);

200 END; (* while price is not zero *)

210 IF total>100.00 {$w+}

220 THEN WRITELN('Total price is $', 6 total-

230 0.15*total:10:2,'* discount *')

240 ELSE WRITELN('Total price is $',
total:10:2)

250 END. (* iftest *)

;naig-&-;;ey;mm@ "

apter 5—Flow of Control

g Nested IF
i statements

Nested [F statements are used when you have many
conditions to test and only one is true. For example, if a
student’s grade average is from 90 through 100, heis given an
A; from 80 through 89, a B; from 70 through 79, a C; from 60
through 69, a D; and below 60, an F. After it isdetermined in
which group an average falls, no other conditions are tested.

100 PROGRAM average;

110 VAR grade:REAL;

120 BEGIN

130 READLN(grade) ;

140 |F grade>=90

150 THEN WRITELN('grade is A')

160 ELSE

170 |F grade>=80

180 THEN WRITELN('grade is B')

190 ELSE

200 IF grade>=70

210 THEN WRITELN('grade is C')

220 ELSE

230 IF grade>=60

240 THEN WRITELN(’grade is D')
250 ELSE WRITELN('grade is F');

260 WRITELN(finished test')
270 END. (* average *)

Anambiguity can result when nested IFs are used. In the
example

500 IF count<10 THEN

WRITELN(' 'value less than 10');
510 IF count>5 THEN WRITELN('value in range')
520 ELSE WRITELN('value out of range')

it is not obvious whether the ELSE belongs to the first or the
second IF. The rule in Pascal is that an ELSE is part of the
closest IF that has not been matched. Thusin the example
above, the ELSE is part of the second IF and is performed
only when the second IF is FALSE.

This pairing of IFs and ELSEs can be changed by using the

reserved words BEGIN and END. The example above can be
changed so that the ELSE is matched with the first IF.

93

Chapter 5—Flow of Control

500 IF count<l0

510 THEN

520 BEGIN

530 WRITELN('value less than 10');
540 IF count>5

550 THEN WRITELN('value in range');
560 END

570 ELSE WRITELN('value out of range');

The ELSE is not matched with the closest IF statement
because that IF statement has been closed off by an END
statement.

The following program accepts lengths for the three sidesof a
triangle. The largest number is determined and the lengths
are displayed. The program then determines whether the
lengths can form a triangle and if so, whether the triangle has

aright angle.

100 PROGRAM triangle;

110 VAR sidel,side2,side3, temp:REAL;
120 BEGIN

130 WRITE('Enter three lengths: '’
140 READ(sidel,side2,side3) {$w+}
150 IF sidel<side2

) {Sw-}

160 THEN

170 BEGIN

180 temp:=sidel;

190 sidel:=side2;

200 side2:=temp;

210 END:

220 IF sidel<side3

230 THEN

240 BEGIN

250 temp:=sidel;

260 sidel:=side3;
270 side3:=side2;
280 side2:=temp:

290 END

300 ELSE

310 IF side2<side3

320 THEN

330 BEGIN

340 temp:=side3;
350 side3:=side2;
360 side2:=temp;
370 END:

94

i

-Chapter 5—Flow of Control

380 WRITELN('Sides of ",sidel:8:1,side2:8:1,side3:8:1);
390 IF sidel<side2+side3

Ik
]\
.
;
|
E
-

400 THEN

410 BEGIN

420 WRITE(' form a triangle’);

430 - IF SQR(sidel)=SQR(side2)+SQR(side3)

-440 THEN WRITELN(' t1hat has a right angle')
1450 END

460 ELSE WRITELN(' do not form a triangle')
|';‘470 END. (* triangle *)

The examples thus far have tested Boolean expressions that
are formed by using relational operators with arithmetic
expressions. Any type of Boolean expression can be formed
to test in an IF statement. By combining two or more
conditions using the words AND or OR, you can test more
than one condition. [f AND or ORis used to test relational
expressions, the expressions should be enclosed in
parentheses to ensure proper evaluation.

For example, in the statements -

IF (grade>100) OR(grade<0)
THEN WRITE(' iillegal grade');
IF (speed>45) AND(speed<55)
THEN WRITE('driving legal speed’);

the message i | legal gradeisdisplayedif gradeisgreater
than 100 orif grade isless than zero. The message driving
legal speedisdisplayed only if speed is greater than 45 and
also less than 55.

The order of precedence for the Boolean operators from
highest to lowest priority is NOT, AND, and OR.

Thus, the IF statement
IF (speed>65) AND(weight<400) OR(speed>55) AND
(weight<300)

THEN WRITE('Correct speed for jump');
isequivalent to the following statement.
IF ((speed>65) AND(weight<400))

OR((speed>55) AND(weight<300))
THEN WRITE('Correct speed for jump’);

95

|

Chapter 5—Flow of Control

The order of evaluation for the logical operators NOT, AND, 3
and OR is shown in the diagram below.

1 IF (s>65) AND(w<400) OR(s>55) AND(w<300) AND NOT (angle<30)

I R P R B
]

THEN EXIT PROGRAM

The following program reads characters from the keyboard
until an asterisk is entered. Each character must be a
lowercase alphabetic letter, a digit from O through 9, ora
period (.). Otherwise, a message is displayed.

100 PROGRAM logictst;

110 VAR ch:CHAR;

120 BEGIN

130 WRITE('Enter character: ') {$w-};
140 READLN(ch) {%$w+}.

150 WHILE ch<>'*' DO

160 BEGIN

170 IF NOT(ch IN['a’'..'z']) AND

180 NOT(ch IN['.','0'.."'9'])

190 THEN WRITELN(’ 1 1legal symbol');
200 READLN(ch) ;

210 END; (* while ch is not '*' *)

220 END. (* logictst *)

96

i gﬂmpter 5—Flow of Control

|

B ﬁi}{_‘-"%ﬁ"?“"‘“j

fﬁCASE The IF statement is used to make a decision between two
Fatement cases (if a condition is TRUE or FALSE). In Pascal, the CASE
b statement can be used when the number of alternativesis
greater than two, such as when an expression can evaluate to
one of many values. This value can be an ordinal type
(INTEGER, CHAR, or BOOLEAN).

A CASE statement has the general form shown below.
CASE expression OF

constantl:statementl;
constant2:statement?;

constanin:statemendtn;
END;

When a CASE statement is executed, the value of expression
is compared with the constants in the constant list. If the
value matches a constant, the statement that follows that
constant is executed.

Inthe following program, a grade is entered and compared to
theletters A, B, C, D, and F. An honor roll message is
displayed if the grade is an A or B; a failure message is
displayed if the grade isan F. No message is displayed if the
gradeisaCorD. '

100 PROGRAM honorol | ;
110 VAR grade:CHAR;
120 BEGIN

130 READ(grade) ;
140 CASE grade OF

150 "A' WRITELN('blue ribbon honor roll’);
160 "B’ :WRITELN(' ' red ribbon honor rol!l');
170 'C': (* do nothing *);

180 'D’: (* do nothing *);

190 "F' WRITELN(failure list’")

200 END; (* case grade *)
210 WRITELN(' Finished’);
220 END. (* honoroll *)

If the expression in the CASE statement does not evaluateto .
one of the given constants, all of the CASE statements are
bypassed and the next statement after the CASE statement is
executed. For example, lines 170 and 180 that correspond to a
CorDcanbe made comments. When a Cor D isentered, none

97

Chapter 5—Flow of Control

98

160 "B’ :WRITELN(’ red ribbon honor roll");§
170 { 'C': (* do nothing *);}
180 { 'D': (* do nothing *);}

. 190 "FOWRITELN(failure list')

of the CASE statements between CASE and its correspondi ,‘
END match. Therefore, program execution continues with '
line 210 asshown in the program below. :

100 PROGRAM honorol | ;
110 VAR grade:CHAR;
120 BEGIN

130 READ(grade) ;
140 CASE grade OF '
150 "A’ :WRITELN(blue ribbon honor roil’); &

200 END; (* case grade *)
210 WRITELN('Finished');
220 END. (* honoroll *)

In a CASE statement, more than one constant may be
associated with a statement. For example, in the program

100 PROGRAM seasons;

110 VAR count: INTEGER;

120 BEGIN

130 WRITE('Enter number of month ') {$w-};
140 READLN (count); ¢3$w+}

150 CASE count OF

160 1,2,12:WRITELN('winter month');
170 3,4,5:WRITELN('spring month');
180 6,7,8:WRITELN(' sumtmer month');
190 9,10, 11:WRITELN(' fall month')

200 END; (* case count *)
210 END. (* seasons *)

the number that is entered from the keyboard is compared
with the constants 1 through 12. If the number matches one
of the constants, the statement following that constant is
performed.

the statements must be enclosed between the reserved wo

If more than one statement is to be executed aftera constanﬂi
BEGIN and END. For example, the program

hapter 5—Flow of Control

100 PROGRAM seasons;

110 VAR count: INTEGER;

120 BEGIN -

130 WRITE('Enter number of month ') {$w-};
140 READLN(count); {$w+}
. 150 CASE count OF

160 1,2,12:BEGIN

170 WRITELN('winter month');

180 WRITELN('cactus, poinsettia’);

190 END;

200 3,4,5:BEGIN i
210 WRITELN(spring month'); i
220 WRITELN(' tulip, rose'); i
230 END;
240 6,7,8:WRITELN(' sunmer month'); |
250 9,10,11:WRITELN(' fail month') ‘

260 END; (* case count *)
270 END. (* seasons *)

displays two lines of output if the constant enteredis 1, 2, 12, :
3,4,0r5.

The following conventions apply to the CASE statement.

« The constant(s) in the constant list must be of the same type
as the expression and must be separated by commas when
there are more than one.)

« A constant should not appear more than once in a constant
list; otherwise, only the first appearance of the constant is
used.

» Multiple statements after a constant must be enclosed
between the words BEGIN and END.

+ A CASE statement must contain at least one statement
preceded by a constant.

* The word END is paired with the word CASE, rather than
with the word BEGIN.

« If no match occurs, program execution continues with the
next statement after the CASE END statement.

99

Chapter 5—Flow of Control

Unconditional

Branch Statements branching. The branch is performed depending upon the

The GOTO
Statement

LABEL
Declarations

100

The [Fand CASE statements are used to perform conditional;

value of an expression. In Pascal, there is alsoan
unconditional branch that enables you to execute another
part of the program, regardless of the values of expressions. §
This unconditional branch is provided by mieans of a GOTO
statement.

The general form of a GOTO statement is
GOTO label

where label must be an integer in the range 00..9999
associated with a statement.

When a GOTO statement is performed, a branch is made to
the specified labeled statement. The interpreter options
remain unaltered during this branch. Program execution
continues from the labeled statement. Note that a GOTO
statement cannot branch into the middle of a repetition
statement or a branch statement.

The statement branched to from a GOTO statement must be 3%
preceded by alabel and a colon. Before you can use a label, !
however, you must declare it ina LABEL declaration, as '}
explained in the next section.

A LABEL declaration is used to declare an integer that can beji
used as a label. A labelisaninteger from 0 through 9999 :
followed by a colon that precedes a statement. This label is
distinct from the line numbers that are used when entering @
program lines. ’

The general form for a LABEL declaration is

LABEL integerl, integer2,..integern;

where integeri, integer2,..integern must be values from 0
through 9999. You can declare multiple labelsin a LABEL
declaration by separating the integers with commas.

Any label that is declared must be used to label a statement. A3
label does not, however, have tobe referenced by a GOTO

statement. .

Any LABEL declarations must precede CONST and VAR
declarations.

Chapter 5—Flow of Control

Review
Chapter 5

Because Pascal was designed for structured programming,
the use of GOTO statements is not encouraged. The variety of
control statements available in Pascal usually makes a
backwards jump in a program unnecessary. Occasionally
however, a GOTO statement is indispensable for situations
where a forward jump is needed.

The following program reads a line of input. If an asterisk (*)
was entered, its position in the line is displayed; otherwise,
the message * not foundisdisplayed.

100 PROGRAM check;

110 LABEL 150;

120 VAR 1ine:STRING;

130 index: INTEGER;

140 BEGIN

150 WRITE('Enter line: ') {$w-};
160 READLN(line) {$w+};

170 FOR index:=1 TO LENGTH(!line) DO

180 BEGIN

190 IF line[index]="*"

200 THEN

210 BEGIN

220 WRITELN('* is character ', index);
230 GOTO. 150;

240 END;

250 END;

260 WRITELN('™ not found');
270 150:WRITELN(!ine);
280 END. (* check *)

1. What are the three Pascal statements that can be used to
construct a loop?

2. For conditional branching,an_____ statement canbe
used when there are two choicesand a
statement can be used when there are multiple choices.

3. Ina REPEAT statement, the loop is performed until the
specified Boolean expression is

Chapter 5—Flow of Control

102

.Ina WHILE statement, the loop is performed while the

specified Boolean expression is

. Write a program that uses a FOR-loop to find the average %

weight of a group of people. The number of people in the
group is entered, followed by their weights. Display the
least and greatest weights and the average weight of the

group.

. Write a program that usesa REPEAT-loop to find the

average weight of a group of people. The number ofpeople
in the group is not known; the weights are read until a zero
(0)isinput. Display the least and greatest weights and the
average weight of the group. .

. Write a program that uses a WHILE-loop to find the

average weight. This time a negative number signals the
end of the input. Display the least and greatest weights and
the average weight of the group.

. What isthe errorinthe following IF-THEN-ELSE

statement?

IF a<>0
THEN WRITELN('a is not zero');
ELSE WRITELN('a is zero');

. Write a program that accepts twelve integers with values

from 1 through 12. Use an IF statement to determine
whether a valueless than 1 or greater than 12 is entered. If |
aninvalid integer is entered, display a message and branch
to the end of the program. Otherwise, use a CASE
statement to display the name of the month that
corresponds to the value entered. For example, if the
number 2 is entered, the program displays February. If 5is]
entered, the program displays May, and so on.

“hapter 6—Arrays

ntroduction

In programming languages, a structure called an array has

been designed for storing large amounts of data in an ordered
sequence. The first data value is stored in the first position of
thearray, the second data value is stored in the second “
position, and so forth. To process the data, you can access

each data value from the first value to the last value, you can

skip through the array and access only certain values, or you
candirectly access a specific value without starting at the

beginning of the array.

You can use an array structure in a Pascal program if you
declare the array name in the declaration section so that the
interpreter can reserve storage locations forit. In the
declaration, you declare the array name, the type of data that
the array will hold, and how many storage locations the array
will have. All the valuesstored in a particular array must be
of the same type.

The declaration
VAR payments:ARRAY[1..10] OF REAL;

allows you to use an array called payments that has 10
storage locations for real data values. The type of data that
the array can hold determines the base type of the array. In
the example above, the base type of the array called
payments is REAL.

Each storage location in the array is accessed by writing the
name of the array followed by the position (or index). For
example, payments[1] refersto the value stored in the first
location of the array, payments{2] refersto the valuein the
second location, and so forth.

Eachvalueinan array is referenced by the same identifier
but the index is different. The values payments[1],
payments(2]..payments[10] are called elements of the
array. Each array element can be used like any other variable
of the same data type.

The index of an array (also called a subscript) must be
enclosed in brackets and can be an INTEGER or CHAR type.
The least and greatest values for a subscript are the constants
that are included in brackets in the declaration. The first
constant specified must be less than or equal to the second
constant. These constants implicitly declare the index type of
the array, that is, if the index isan INTEGER type or CHAR
type.

103

Chapter 6—Arrays

104

Theindex type tells how many valuesare inan array and how

to access them, as shown in the examples below.

Declaration Comments

VAR rvals:ARRAY[1..25] OF REAL;
The 25 REAL elements of
the array rvals are
referenced by
rvals[1l]..rvals{25].

range:ARRAY[-10. .10] OF REAL;
The 21 REAL elements of
the array range are
referenced by
range[-10]. .range[10]

year :ARRAY[1975. .2000] OF INTEGER;
The 26 INTEGER elements
of thearray year are
referenced by year{1975)
..year[2000].

ch:ARRAY['g' .. 'p'] OF CHAR;
The 10 CHAR elements of
the array ch are referenced
bych['g']..ch['p'].

st:ARRAY[1..10] OF STRING;
The 10 elements of the
array st arestrings that are
referenced by
st(1]..st{10].

If you attempt to use the wrong type of index or a larger or
smaller value than was declared for the array, an error
occurs.

Note that each array location has two quantities associated
with it.

e Anindex (or subscript)
¢ The contents(or value)in the location

Chapter 6—Arrays

The following program assigns values to an array in
sequential order from the first index value to the last. The
VAR declaration causes the interpreter to allocate three
consecutive storage locations for REAL data. The index (or
subscript) of the array isan INTEGER type that can be from 1
through 3.

A FOR statement is used in this illustration because the
integer control variable (which is incremented by one)can
also be used as the array subscript to access each storage
location in the array. The first real value entered from the
keyboard is stored in the first storage location of the array
payment, the second into the second location, and the third
into the third location.

After the values are assigned, a FOR statement is used to
access and display each element from the third down to the
first. .

100 PROGRAM exlarray;
110 VAR payments:ARRAY[1..3] OF REAL;

120 counter: INTEGER;
130 BEGIN
140 WRITE('Enter 3 real values: ') {$w-};
150 FOR counter:=1 TO 3 DO
160 READ(payments[counter]); {$w+}
170 FOR counter:=3 DOWNTO 1 DO
- 180 WRITELN(' payments[',6 counter,’] is ',
190 payments[counter]);

200 END. (* program exlarray*)

Anexample of an array that stores string dataisshown in the
program below. Note that the strings are read ina READLN
statement.

100 PROGRAM storestr;

110 VAR strarray:ARRAY[1..5] OF STRING;
120 index,counter: INTEGER;

130 BEGIN

140 WRITELN('Enter 5 strings');

150 FOR index:=1 TO 5 DO

160 BEGIN {$w-}

170 WRITE('Enter string ’',index, ' :’');
180 READLN(strarray[index]);

190 END; {Sw+}

200 FOR index:=1 to 5 DO

210 WRITELN(strarray[indexl);

220 END. (* storestr *)

105

Chapter 6—Arrays

106

The arrays described so far have been one-dimensional
arrays. A one-dimensional array structure is used to hold the
valuesinalist. A one-dimensional array has only one
subscript written after the array name. The following
program illustrates sequential access to the valuesin a one-
dimensional array.

100 PROGRAM ex2array;

110 VAR multilO:ARRAY[1..4] OF INTEGER:
120 counter: INTEGER;

130 BEGIN

140 multilO[1]:=10;

150 multil0O[2]):=20;

160 multilO[3]:=30;

170 multilO[4]:=40;

180 FOR counter:=1 TO 4 DO

190 WRITE(multilO[counter]:5)
200 END. (* program ex2array *)

The array mu |l 1110 is a one-dimensional array and the data
values stored in itslocations are stored just as they appearin
list.

multilO[1] multilO[2] multilO[3] multilO[4]
10 20 30 40

or

multilo[l] 10
multil0O[2] 20
muitilo{3] 30
multilof4] 40

Chapter 6—Arrays

Declaring an Array You can define an identifier asan array type by declaring the

Type

identifier in a type declaration. The base type can be any
predefined type or user-defined type, except a file type
(discussed in chapter 8).

The declaration
TYPE tal ly=ARRAY{1..25] OF INTEGER;

definesa new type called tal |y, an array with 25 elements.
The data stored in the array must be of type INTEGER and the
index of the array must be an integer from 1 through 25.

Note that the preceding TYPE declaration does not reserve 25
storage locations for tal | y. The TYPE declaration only
defines tal |y asan ARRAY type with 25 INTEGER elements.

If the following VAR declaration isadded after the TYPE
declaration

TYPE tally=ARRAY[1l..25] OF INTEGER;
VAR sales:tally;

the variable called sales isdeclared tobe of the type tal ly.
Because tal lyisan ARRAY type of 25 integers, the variable
salesisanarray that is allocated 25 storage locations for
storing integers.

This type of declaration is useful especially when you have
other variables with a type you have defined. For example,
the statements

TYPE tally=ARRAY[1..25] OF INTEGER;
VAR sales:tally;

accounts:tally;

parts:tally;

define three arrays, each with 25 integer locations. If the
array size needsto be enlarged to 50, the only statement that
needs to be changed is the type declaration. For example, if
the declaration were changed to

TYPE tally=ARRAY[1..50] OF INTEGER;

eachof thearrays sales, accounts,and parts would then
have 50 locations.

107

Chapter 6—Arrays

Random Accessto Theelementsinanarray canalso be accessed randomly, that
a One-Dimensional is, any element in anarray can be directly accessed by using

Array

108

itsarray name and subscript in the array. The elements need
not be accessed from the beginning of thearrayorina
particular order.

For example, in the program below, you determine how many
integers (up to 100) to store in an array. Any element in the
array can be displayed by entering the subscript of the array
correspondingto that element.

100 PROGRAM randomac;
110 VAR count, index: INTEGER;

120 intval :ARRAY{1..100] OF INTEGER;

130 ch:CHAR;

140 BEGIN

150 REPEAT

160 WRITE('# of integers to enter: ')
{$w-1};

170 READLN (count) ;

180 UNTIL count IN[1..100];
190 FOR index:=1 TO count DO

200 BEGIN

210 WRITE("#: ");

220 READLN(intval[index]):
230 END;

240 WRITE('Display a value? (y or n)');
250 READLN(ch) ;

260 WHILE (ch="Y') OR(ch='y') DO

270 BEGIN

280 WRITE('Which value: '):

290 READLN(index) ;

300 IF (index>=1) AND(index<=count)

310 THEN WRITELN('Value is ',
intval[index]) {$w+};

320 WRITE('Display a value? (y or n)')

{$w-},
330 READLN(ch) ;
340 END; (* while ch=y or Y *)

350 END. (* randomac *)

“hapter 6—Arrays

‘wo-Dimensional
\rrays

Often a one-dimensional array is not suitable for storing a set
of data. Rather than storing the data in a one-dimensional
array as a list, you could arrange the data in rows and columns
(asin a table or matrix) by using a two-dimensional array.

For example, the rainfall (in inches) of a town for 10 years
could be recorded in a table as shown below.

J F M A MJ J A § O N D

1970 2313214543 120806 32 23 3.2 43

1971 15232656 35020512 383243 2.1

1972 2.1 342243553204021.1213323

1973 2.2 2453 5.1 210305 0.1 32 2.5 3.4 2.1

1974 255423565553122103223420

1975 1.4 21 316564231513 16322032

1976 1.820391.12933040727123224

1977 1.1 21 344129400502 1829121.1

1978 21091434122509081819151.2

1979 152621 3646250609 19123216

To store thisdata in a two-dimensional array, the array must
be declared at the beginning of the program with two
dimensions. Declaring a two-dimensional array in a TYPE and
a VAR declaration is shown below.

TYPE identifier=ARRAY[m..n,p..q] OF type;
VAR identifier: ARRAY[m..n,p..q] OF type;

where
identifier is the user-defined name of the array. 1
m is the least value for the row subscript. B
n is the greatest value for the row subscript. :
P is the least value for the column subscript. i
q isthe greatest value for the column subscript. 1
type is any type except file (discussed in chapter 8).]
’[

109 !

Chapter 6—Arrays

Accessing the
Elementsina
Two-Dimensional
Array

To store the valuesin the previous table inan array called
rainfall,thearray namerainfal |l islistedina VAR
declaration with 10 rowsand 12 columns.

VAR rainfall :ARRAY[1970..1979,1..12] OF REAL;

A two-dimensional array can also be thought of as an array of
elements, each of which isalsoanarray. [f you have an array
with 5 elements,

arrayl
array?2
array3
array4
arrayb

each element can be thought of as another array, as shown
below.

arrayl, arrayl, arrayl, arrayl, arrayl.
array2, array2, array2, array2, array2.
array3, array3, .array3, array3, array3,
array4, array4, arrayd, array4, array4.
arrayd, array5, arrays,, arrayd, arrays,

Thus, a two-dimensional array can also be declared as shown
below.

TYPE identifier=ARRAY[m..n] OF ARRAY[p..q] OF type;
or
VAR identifier ARRAY[m..n] OF ARRAY[p..q] OF type;

The elements in a two-dimensional array are accessed by
entering the array name followed by the element’s row and
column enclosed in brackets and separated by commas.

For example

rainfall[1970,7] refers to the data value in the 1Ist
row and the 7th column of the array
rainfail.

rainfali[1974,10] referstothedatavalueinthe5th
row and the 10th column of the
arrayrainfall.

“hapter 6—Arrays

The elements in a two-dimensional array can also be
referenced as shown below,

rainfal1[1970][7] referstothedatavalueinthe lst
row and the 7th column of the array
rainfail.

rainfal1{1974){10) referstothedata valueinthe5th
row and the 10th column of the
array rainfalt.

A nested FOR statement is often used to access the elements
of a two-dimensional array. The outer FOR statement
processes the rows (or columns)inanarray, while the inner
FOR statement processes the columns (or rows). For example,
inthe following control structure

FOR row:=1970 TO 1979 DO
FOR column:=1 TO 12 DO

the first FOR statement is used to access each row of elements
and the second FOR statement is used to access the elements
in each column of a row.

The following program can be used to assign to the array
rainfall the valueslisted in the preceding table. Note that
the program is written so that the data isenteredarowata
time.

100 PROGRAM ex4darray;
110 VAR rainfall:ARRAY[1970..1979,1..12] OF

REAL ;
120 row,column: INTEGER;
130 BEGIN
140 FOR row:=1970 TO 1979 DO
150 FOR column:=1 TO 12 DO
160 READLN(rainfall[row,column]);

170 END. (* program exdarray *)

The elementsin the array can be accessed in any order. For
example, suppose you want to find the year in which the most
rain fell for each month. The following program compares the
elementsin each row (year) of a column and determines the
largest for each column, which is then displayed.

100 PROGRAM exb5array:

110 VAR rainfall:ARRAY[1970..1979,1..12] OF
REAL ;

120 year ,row,column; INTEGER;

Chapter 6—Arrays

Three-Dimensional
Arrays

112

130 greatest:REAL;

140 BEGIN

150 FOR row:=1970 TO 1979 DO

160 FOR column:=1 TQ 12 DO

170 READLN(rainfall[row,column]);

180 FOR column:=1 TO 12 DO

190 BEGIN

200 greatest:=0.0;

210 FOR row:=1970 TO 1979 DO

220 IF rainfall[row,column]>greatest
230 THEN

240 BEGIN

250 greatest:=rainfall[row,column];
260 year:=row,

270 END;

280 WRITELN('Year ' year,' Mo ', column,
290 'most rain= ',greatest);

300 END; (* column :=1 to 12 *)

310 END. (* program exSarray *)

Some problems require an array with more than two
dimensions. Suppose that in the previous example you need
to store the amounts of rainfall for 5 towns. When the data is
recorded on paper, the data for each townis printedona
separate page. When the data isstoredinan array, a third
dimension is defined to keep each town’s table of rainfall.

The following declaration defines a three-dimensional array
with 10 rows by 12 columns by 5 pages of REAL values.

VAR rainfall :ARRAY[1970..1979,1..12,1..5] OF
REAL ;

Nested FOR-loops can be used to access the elements in the
array. The outermost control structure canreference each of
the 5 towns, and the table of values for each of the towns can
be processed by accessing each column in each row.

The following program displays a histogram of the yearly
rainfall for each of the 5 towns. Note that the starting and
ending years and the numbers of columns and pages are
defined as constants at the beginning of the program and can
easily be changed.

First, the rainfall of 5 towns for 10 years is entered in the
array rainfal |. For each town, the number of inches of
rainfall in a year is found and a colon (:) is displayed for
eachinch.

Chapter 6—Arrays i _
3
4
!

Arrays of
“haracters

100 PROGRAM exb6array;
110 CONST startyr=1970;

120 endyr=1979;
130 © colnum=12;
140 pagnum=5;

150 VAR rainfall:ARRAY[startyr. .endyr,
1..colnum,1..pagnum] OF REAL;

160 row,col,pag,scale: INTEGER;

170 total :REAL;

180 BEGIN (* program body *)

190 FOR pag:=1 TO pagnum DO

200 FOR row:=startyr TO endyr DO

210 FOR col:=1 TO colnum DO

220 BEGIN

230 WRITE(town[, 'pag,’'].yr[' . row,
"T.mo[",col,"17") {$w-};

240 READLN(rainfali[row,col,pag]) {$w+};

250 END;

260 FOR pag:=1 TO pagnum DO

270 BEGIN

280 WRITELN('Rainfall for town # ', pag);

290 FOR row:=startyr TO endyr DO

300 BEGIN

310 WRITE(row, '— ') {$w-};

320] total:=0.0; A

330 FOR col:=1 TO colnum DO : |

340 total:=total+rainfall[row,col, pag]; :

350 scale:=TRUNC(total); i

360 FOR col:=1 TO scale DO WRITE(' : "), i

370 {$w+} WRITELN;

380 END; (* row:=startyr to endyr *)

390 END; (* pag:=1 to pagnum *)
400 END. (* ex6array *)

An array of characters holds a sequence of characters. H
Suppose you want to enter a paragraph of text from the |
keyboard and have a program display the number of times

each of the 26 letters in the alphabet is used. If a digit from 0

through 9 is entered, the digit is replaced with its equivalent

English word.

The following program reads characters until either an
asterisk (*) or 1000 characters have been read. The characters
are stored in a character array. Note that whentextisread, a
program must determine if it has reached the end of aline.

Chapter 6—Arrays

114

The program below uses the EOLN function (described in
chapter 8) to determine if the end of the line (the [ENTER]
character) has been read. If an input statement has read the
end-of-line character, the next character is read for the
variable. Otherwise, the variable would be assigned a space.

After the text isread, it is displayed. Any digit is replaced
with its equivalent English word. The number of times each
alphabetic character is used is then displayed.

100 PROGRAM chartest;
110 CONST maxchar=1000;
120 VAR numchar: ARRAY['a’..'z'] OF INTEGER;

130 charactr:ARRAY[1. .maxchar] OF CHAR;
140 chindex,charlet:CHAR;
150 counter,position: INTEGER;

160 BEGIN (* program chartest *)
170 FOR chindex:="'a' TO 'z' DO
180 numchar[chindex]:=0;

190 counter:=0;

200 READ(charlet);

210 WHILE charlet<>'*' DO

220 BEGIN

230 IF EOLN

240 THEN READ(chariet);

250 IF charlet IN['a’..'Z2"]

260 THEN numchar[charlet]:=
numchar[charlet]+l;

270 counter:=counter+l;

280 charactr[counter]:=charlet;

290 READ(charlet);

300 IF counter=maxchar

310 THEN charlet:='*";

320 END; (* charlet <>'*' *)

330 WRITELN;
340 FOR position:=1 TO counter DO
350 BEGIN

360 IF charactr[position] IN[’0'..'9"]
370 THEN CASE charactr[position] OF
380 'O’ :WRITE(' zero ');

390 "1'":WRITE('one ');

400 '2" WRITE('two ');

410 '"3":WRITE(' three ");

420 "4’ WRITE(four ');

430 "5 WRITE(' five ');

440 - "6 :WRITE('six ");

450 '7" WRITE('seven ');

460 '8 :WRITE('eight ');

Chapter 6—Arrays

Packed Arrays

470 "9’ WRITE('nine ");

480 END (* case statement *)

490 ELSE WRITE(charactr[position]);
500 END; (* position:=1 to counter *)

510 WRITELN;

520 FOR chindex:='a' TO 'z' DO

530 WRITELN(chindex,’': ',numchar{chindex])
540 END. (* program chartest *)

In Pascal the data can be stored in an array in the minimum
amount of storage by preceding the word ARRAY with
PACKED. By packing data into arrays, you can save memory
space. Some routines require packed arrays for processing.

The declaration
170 VAR letter:PACKED ARRAY[1..26] OF CHAR;

allocates 26 storage locations for the array letter. The
elements of | etter mustbe characters.

APACKED ARRAY OF CHAR and a STRING data type are
similar, but not synonymous. The length of a PACKED
ARRAY OF CHAR is always that specified in its declaration;
the length of a string can change during program execution. A
string’slength is its dynamic length, that is, the number of
characters last assigned to it.

You can assign to a STRING data type the value of a string
constant and to a CHAR data type the value of a character
constant. You cannot assign toa PACKED ARRAY OF CHAR
the value of a string identifier because the string’s length is
dynamic. However, you can assign toa PACKED ARRAY OF
CHAR a quoted string if their lengths are the same.

For example, suppose the following variables are declared.

110 VAR strl,str2:STRING;
120 chararay:PACKED ARRAY[1..28] OF CHAR;
130 ch:CHAR;

Then the following assignments are valid.

250 strl:='This string is 28 characters’;
260 str2:='This is 10';

270 ch:="a’;

280 chararay:='This string is 28 characters’;

115

Chapter 6—Arrays

116

However, the following assignment is invalid.
300 chararay:=strl;

You can reference a PACKED ARRAY OF CHAR with its
identifier and one less dimension than you declared in the
declaration section. Fora PACKED ARRAY OF CHAR with
one dimension, you can access the entire array with only the
identifier. For example, if the following arraysare declared

VAR pacl:PACKED ARRAY[1..80] OF CHAR;
pac2:PACKED ARRAY[1..80] OF CHAR;

the identifiers pacl and pac2 can be used to access all 80
elementsin therespective arrays.

In the following program, values are entered from the
keyboard and assigned to pacl. Because pacl and pac2 are
eacha PACKED ARRAY OF CHAR of the same length, one
assignment statement (line 170) can be used to assign the
elementsof pacl topac2.

100 PROGRAM entire;
110 VAR pacl:PACKED ARRAY[1..80] OF CHAR;

120 pac2:PACKED ARRAY[1..80] OF CHAR;
130 count : INTEGER;

140 BEGIN

150 FOR count:=1 TO 80 DO

160 READ(pacl[count]);

170 pac2:=pacl;
180 END. (* entire *)

The followingrelational operators can be used to compare
elementsin one PACKED ARRAY OF CHAR with an equal
number of elements in another PACKED ARRAY OF CHAR.

equality = returns a TRUE result if each array
element in one array is equal to its
corresponding element in another array.

not equalto <> returnsa TRUE result if any array element
in one array is unequal to its corresponding
element in another array.

hapter 6—Arrays

lessthan < returns a TRUE result if the first element in
the left array that is not equal to its
corresponding element in the right array is
less than that element.

lessthanor <= returns a TRUE result if the first element in

equal to the left array that is not equal to its
corresponding element in the right array is
less than that element or if the left array
equalstherightarray.

greater than> returns a TRUE result if the first element in
the left array that is not equal to its
corresponding element in the right array is
greater than that element.

greater than> = returns a TRUE result if the first element in

or equal to the left array that is not equal to its
corresponding element in the right array is
greater than that element or if the left
array equals the right array.

For example, suppose the declarations

VAR pacnamel : PACKED ARRAY[1..4] OF CHAR;
pacname2:PACKED ARRAY[1..4] OF CHAR;

and the assignments

pacnamel ;
pacname2;

'Glen’;
'Gary"';

Ul

have been made. Then the results returned by the following
operations are as shown.

Operation Result Comments

pacnamel =pacname2; FALSE Every characterinGlenisnot
equal toits corresponding
characterinGary.

pacnamel<>pacname2; TRUE Atleast one characterinGlen

isnot equal toits
corresponding character in
Gary.

Chapter 6—Arrays

Operation Result Comments N

pacnéme 1<pacnameZ2; FALSE The second characterinGlen
(1) is not less than the second
characterinGary (a).

pacnamel<=pacname2; FALSE The second characterin Glen
(l)is not less than or equal to
the second characterin Gary

(a).

pacnamel>pacname2; TRUE The second characterinGlen
(1) is greater than the second
characterin Gary (a).

pacnamel>=pacname2; TRUE The second characterinGlen
(1) is greater than or equal to
the second characterinGary

(a).

You can also use the assignment and relational operators
described above with two- or three-dimensional packed
arrays and specify one less dimension than you declared in
the declaration.)

For example, inthe following program the array ch is
declared a packed array with two dimensions. Therefore, the
identifier can be used with one subscript. In the first FOR-
loop, five characters are assigned to the five elementsin the
first row of the array (ch[1]). In the second FOR-loop, chis
used with one dimension. The reference ch[index] accesse:
all of the elements of the row specified by index. The
reference ch[1] accesses all of the elements in the first row.
Therefore, the values of the elements in the first row are
assigned to the elements in each successive row. Each row of
the array isthen displayed.

100 PROGRAM expack;
110 VAR ch:PACKED ARRAY[1..10,1..5] OF CHAR;

120 index: INTEGER;

130 BEGIN

140 FOR index:=1 TO 5 DO
150 READ(ch[1, index]);

160 FOR index:=2 TO 10 BO
170 ch[index]:=ch[1];

180 WRITELN('Array assigned’);

hapter 6—Arrays

190 FOR index:=1 TO 10 DO
200 WRITELN(ch[index])
210 END. (* expack*)

If the following characters are entered, the output is as ‘
shown. !

Input: SCOTT
Output: Array assigned
SCOTT
SCOTT
SCOTT
SCOTT
SCOTT .
SCOTT _ ‘
SCOTT
SCOTT
SCOTT
SCOTT |

119

Chapter 6—Arrays

Review 1.Inthe array declaration, VAR test:ARRAY{'a’'.. z']
Chapter 6 OF INTEGER;, the base type of thearray test is
and the index type is .

2. The index type of anarray canbe a

Ly

3. How many storage locations are reserved for the array
salesinthe following declaration?

TYPE sales=ARRAY[1..100] OF INTEGER;

4. Write a program that reads a word and displays it
backwards.

5. Write a program that reads 15 integers and displays them ir§
descending numerical order.

6. If a program contains the following declarations

VAR pacl:PACKED ARRAY[1..10] OF CHAR;
pac2:PACKED ARRAY[20..30] OF CHAR;
pac3:PACKED ARRAY[1..18] OF CHAR;
pac4:PACKED ARRAY[1..10,1..10] OF CHAR;
st1:STRING[10];
st2:STRING;
ch:CHAR;

which of the following statements are invalid and why?

stl:="hello’ ’
st2:='18 characters long’; ?
pacl:=st2; @
pac3:=st2; -

pacl:="18characters long’;
pac3:="18characters long’
pacl:=pac2;

pac2<>pac3;

pac4[1]:=pacl;

pacéd:=pacl;

120

hapter 7—Procedures and Functions

itroduction

A prograni can become rather long and hard to read when all
the statements are written in one long sequence. It is easier to
read, write, understand, and debug a program if you group
statements into blocks that accomplish a specific task. By
using a top-down design, you can produce programs that are
organized into blocks of programming tasks. First you write
the general oatline of the program and then define each step
ingreater detail. .

Suppose you want a program to display a message and four
asterisks, a message and six asterisks, and a message and four
asterisks. The general outline of this program is shown below.

PROGRAM usingpro;
BEGIN
display message and four asterisks
display message and six asterisks
_ display message and four asterisks
END.

To perform each of the steps in the outline program, each step
must be defined in greater detail. The following statements
display a message and four asterisks.

WRITE(**");

WRITE(' four asterisks ');
WRITELN(**");

WRITELN(*®**") .

The next group of statements display a message and six
asterisks.

WRITE(***'),

WRITE(' six asterisks ');
WRITELN(**™ "y,
WRITELN(' #**%*x="y,

By declaring each group of statements to be a procedure, you

can organize the program into blocks of programming tasks.

When a section of a program body is declared tobe a ;
procedure {or a function), that section can be executed f
several times in a program but need be written only once. All [
procedure and function declarations must appear \
immediately before the BEGIN of the program body.

. i
The statements in a procedure or function are executed (or ;
called)at any point in a main program hody or another :
procedure or function body where the procedure or function

121

Chapter 7—Procedures and Functions

identifier appears. The difference between a procedure and 4
function is that a procedure is used like a statement to
performaroutine, whereas a function is used like a variable
tosupply a value that may be used in an expression.
Procedures are used to make a program modular and easier to
understand. A function is used to compuie a single value,
which is then assigned to the function identifier.

i Procedure Procedures enabtle you to:
i Declarations
» write shorter programs by not replicating code.

B) * divide a problem into smaller independent subproblems.
: + alter a program more easily because the alteration can be
! made in a procedure without affecting other procedures.
! * write programs that are easier to understand because the
! programs are broken into logical sections.

In simplest form, a procedure appears as shown below. Notice
that a procedure follows the pattern of a Pascal program in

; general. Just as the term program block refers to all of the

declarations and statements in a program, the term

: procedure block refers to all of the declarations and
statenments in a procedure: However, in T1-74 Pascal,
procedures and funcetions cannot be declared within a
procedure.

procedure heading PROCEDURE identifier;

declarations LABEL declarations

CONST declarations

TYPE declarations

VAR declarations

procedure body BEGIN

statements

END;

Procedure Block

hapter 7—Procedures and Functions

All declarations used must appear at the beginning of a

procedure block in the same order as that of a program. A

procedure must have a BEGIN and an END, just as a program

does. However, the END statement of a procedure is followed

by a semicolon (;); the END statement of a program is

followed by a period (.). It is good programming practice to

place the name of the procedure in a comment following END :
to improve program readability. i

In the preceding program sections that display a message and
four asterisks and a message and six asterisks, each program
section can be declared to be a procedure, as shown below.
Line 120 declares the first section as a procedure named
astrisk4 andline 200 declares the second sectionasa
procedure named astrisk6.

120 PROCEDURE astrisk4;
(* Message with four asterisks *)

130 BEGIN

140 WRITE(**");

150 WRITE(' four asterisks ');
160 WRITELN(' **');

170 WRITELN(' ****");

180 END; (* astriskd4 procedure *)
200 PROCEDURE astrisk6;
(* Message with six asterisks *)

210 BEGIN

220 WRITE(' ***');

230 WRITE(' six asterisks ');
240 WRITELN(*** ') ;

250 WRITELN (' ***x**') .

260 END; (* astrisk6 procedure *)

After a procedure has been defined in a declaration, the
procedure can be executed in the program body by using its
name as you would a statement. At each point where the
name of the procedure is written, the body of the procedure
is executed as if it were inserted into the program at that
point.

In the program body, suppose you want to execute the first
group of statements, then the second group of statements,
and again the first group of statements. The program body
would then contain the statements shown on the next page.

123

Chapter 7—Procedures and Functions

100 PROGRAM usingpro;
(* example program using procedures *)
110 (* procedure declaration *)
120 PROCEDURE astrisk4;
(* Message with four asterisks *)
130 BEGIN
140 WRITE(' ** "),
150 WRITE(' four asterisks ');
160 WRITELN(' **');
170 WRITELN(****');
180 END; (* astrisk4 *)
190 PROCEDURE astrisk6;
(* Message with six asterisks *)
200 BEGIN
210 WRITE(***');
220 WRITE(' six asterisks ');
230 WRITELN(***');
240 WRITELN(******").
250 END; (* astrisk6 *)
260 BEGIN (* program body *)
270 astrisk4; (* Executes astrisk4 proc *)
280 astrisk6; (* Executes astriské proc *)
290 astrisk4; (* Executes astrisk4 proc *)
300 END. (* usingpro *)

The statementsin the program body that contain astrisk4 1
and astr.isk6 are called procedure calls. A procedure call
causes the statements defined as that procedure in the
declaration section to be executed.

124

Chapter 7—Procedures and Functions

Function
Declarations

Functions are used like variables in expressions. Whenan
expression is evaluated,

¢ the value stored in a variable location is used where the
variable name appears in that expression.

¢ the value of a function is computed where the function
name appears in that expression with the data input toit.

[n simplest form, a function appears as shown below. Notice
that a function follows the pattern of a Pascal program in
general. A function block contains a declaration sectionand a
statement section. However, in T[-74 Pascal, procedures and
functions cannot be declared within a function.

function heading FUNCTION identifier:type;

declarations LABEL decliarations

CONST decliarations

TYPE declarations

VAR declarations

function body BEGIN

statements (including at least one
executed statement that assigns a value
to the name of the function)

END;

Function Block

A FUNCTION declaration, like a VAR declaration, must end
with a colon followed by a data type and a semicolon. The
data type indicates the type of value that the function
returns. Pascal functions canreturn INTEGER, REAL,
BOOLEAN, or CHAR type values.

All declarations used must appear at the beginning of a
function block in the same order as that of a program. A
function must have a BEGIN and an END, just as a program
does. However, the END statement of a function is followed
by a semicolon (;); the END statement of a program is

125

Chapter 7—Procedures and Functions

followed by a period (.). It is good programming practiceto @
place the name of the function in a comment following END i A
to improve program readability.

Ending a Procedure A procedure or function terminates and returns to its caller
or Function when the END statement is encountered. You can, however, "
terminate a procedure or function before the END statement #
by using the EXIT or HALT procedures. You can alsohavea 3
procedure or function terminate program execution by using 3|
either the EXIT or HALT procedures.

Note that a GOTO statement cannot be used to branch out of §
orinto a procedure or function. A GOTO statement usedina #
procedure or function must branch to a statement in the
block containing the GOTO statement.

Inthe first example below, the procedure return usesthe
EXIT proeedure to terminate execution of the procedure
afterthe message return is terminatingisdisplayedat
line 280. Program execution continues at line 360.

procedure to terminate execution of the program after the
message return is terminatingisdisplayed at line 280.
Note that the EXIT procedure can use the identifier of the
programor the reserved word PROGRAM to terminate
program execution.

%
i

!
Inthe third example, the procedure returnusesthe HALT ¥
procedure to terminate program execution after the message 4}
return is terminatingisdisplayed atline 280. The HALT 3

atline 290 turns on the error indicator and displays the
message Programmed Halt.

Example 1

100 PROGRAM usingpro; (* example program using procedures *)
110 (* procedure declaration *)

120 PROCEDURE astrisk4; (* Message with four asterisks *)
130 BEGIN

140 WRITE(' **');

150 WRITE(' four asterisks ');

160 WRITELN(' **'");

170 WRITELN(® ***= ") ;

180 END; (* astrisk4 *)

190 PROCEDURE astrisk6: (* Message with six asterisks *)
200 BEGIN

210 WRITE(***');

126

B

Chapter 7—Procedures and Functions

|
|

- 220
- 230
240

WRITE(' six asterisks '):
WRITELN(*** ")

| WRITELN(' #® w2y

1250 END; (* astriské *)

E260 PROCEDURE return; (* termination procedure *)
;270 BEGIN

FZBO WRITELN(return is terminating’);

290 EXIT(return);

300 WRITELN(' before this statement is displaved’);
f310 END; (* procedure return *)

;320 BEGIN (* program body *)

330 astrisk4; (* Executes astrisk4 procedure *)
340 astrisk6; (* Executes astrisk6é procedure *)
350 return; (* Executes return procedure *)

§360 astrisk4; (* Executes astrisk4 procedure *)
{370 END. (* usingpro *)

|

. Example 2

|

}100 PROGRAM usingpro; (* example program using procedures *)
110 (* procedure declaration *)

3120 PROCEDURE astrisk4; (* Message with four asterisks *)
130 BEGIN

‘140 WRITE(**'),

150 WRITE(' four asterisks ');

1160 WRITELN(**');

170 WRITELN(****");

180 END; (* astrisk4 *)

190 PROCEDURE astrisk6; (* Message with six asterisks *)
200 BEGIN

210 WRITE(***');

220 WRITE(' six asterisks ');

230 WRITELN(***");

240 WRITELN(' #*#*e#ry .

250 END; (* astrisk6 *)

260 PROCEDURE return; (* termination procedure *)

270 BEGIN

280 WRITELN(' return is terminating');

290 EXIT(usingpro);

300 WRITELN(' before this statement is displayed');
310 END; (* procedure return *)

320 BEGIN (* program body *)

330 astriskd4; (* Executes astrisk4 procedure *)

340 astrisk6: (* Executes astrisk6 procedure *)

350 return; (* Executes return procedure *)

360 astrisk4; (* Executes astrisk4 procedure *)

370 END. (* usingpro *)

127

Chapter 7—Procedures and Functions

Example 3

100 PROGRAM usingpro; (* example program using procedures *)
110 (* procedure declaration *)

120 PROCEDURE astrisk4; (* Message with four asterisks *)
130 BEGIN

140 WRITE(**');

150 WRITE(® four asterisks ');

160 WRITELN(**');

170 WRITELN(****"),

180 END; (* astrisk4 *) .

190 PROCEDURE astrisk6; (* Message with six asterisks *)
200 BEGIN :

210 WRITE(' ***');

220 WRITE(' six asterisks ');

230 WRITELN(" ***");

240 WRITELN(**#**=>').

250 END; (* astrisk6 *)

260 PROCEDURE return; (* termination procedure *)

270 BEGIN
280 WRITELN('return is terminating’);
290 HALT;

300 WRITELN(' before this statement is displayed’);
310 END; (* procedure return *)

320 BEGIN (* program body *)

330 astrisk4; (* Executes astrisk4 procedure *)

340 astrisk6; (* Executes astrisk6 procedure *)

350 return; (* Executes return procedure *)

360 astrisk4; (* Executes astrisk4 procedure *)

370 END. (* usingpro *)

128

hapter 7—Procedures and Functions

arameters

Procedures and functions can optionally be supplied values
for use in their routines. Supplying a value to a procedure or a
function increases its utility because the defined routine can
be used to perform operations on any number of values.

The values passed to a procedure or a function are called
parameters. When a procedure or function is called, the main
program specifies the parameters to be used. These values are
called actual parameters and are included in parentheses
after the procedure or function identifier.

When a procedure or function identifier appears in a program
body, it is called a procedure or function call, respectively.
When a procedure or function call that includes actual
parametersis encountered in a program, the current value of
each actual parameter is passed to the procedure or function.
The routine then uses these valuesin its calculations.

A procedure or function that is passed a value must list in its
declaration the variable that is toreceive the passed value.
The variables listed in a procedure or function declaration are
called formal parameters. All formal parameters must have
their type (the type of data that is to be stored there) defined
inthe declaration.

For example, if an integer value is passed to the procedure
graph, its declaration must include the variable to which the
integer value is assigned, followed by a colon and the
reserved word INTEGER as shown in the example below.

PROCEDURE graph(formparl: INTEGER) ;

The interpreter reserves memory space for the variables
listed as formal parameters so that these variables need not
appearina VAR declaration within the procedure or
function. Variables in a procedure or function that are not
parameters and are not declared in the main program,
however, are defined ina VAR declaration within the
procedure or function. Note that reserved words cannot
appear as formal parameters.

The following program prompts for the number of asterisks
that are to be displayed. After a numberisinput to the
program, the procedure graph is called and the program
passes the number entered from the keyboard to the
procedure. The procedure then displays the specified number
of asterisks.

129

Chapter 7—Procedures and Functions

130

100 PROGRAM exprocl;

110 VAR times: INTEGER;

120 PROCEDURE graph(count: INTEGER) ;

130 VAR counter: INTEGER;

140 BEGIN {$w-}

150 FOR counter:=1 TO count DO

160 WRITE(*"); {$w+}

170 WRITELN;

180 END; (* graph *)

190 BEGIN (* program exprocl *)

200 WRITE(Enter # of char. to display: ')
{$w-};

210 READLN(times) {$w+};

220 graph(times);

230 END. (* program exprocl *)

The procedure declaration of graph requiresthat any
referenceto graph in the program body must include an
integer expression in parentheses. This expression is
evaluated and its value passed to graph when the procedure
call is executed. Graph then assigns the value passed to it to
the variable called count.

The procedure graph could be altered so that a program can
specify both the character that is displayed and the number
of times the character is displayed. In this case, the proceduré
graphrequires two formal parameters that have different
types and must be separated by semicolons in the declaration
Any call to graph in the main program must then include two
actual parameters (which can be any two expressions)
provided that the first evaluates to an integer and the second
represents a character. The two parameters are separated by
acomma.

The following program illustrates a procedure call that passes
two parameters.

100 PROGRAM exprocl;

110 VAR times: INTEGER;

120 prcharac:CHAR;

130 PROCEDURE graph(count: INTEGER;
charactr:CHAR) ;

140 VAR counter: INTEGER;

150 BEGIN {$w-} :

160 FOR counter:=1 TO count DO

170 WRITE(charactr); {3$w+}

180 WRITELN;

‘hapter 7—Procedures and Functions !

slobal
ind Local
dentifiers

190 END; (* graph *)

200 BEGIN (* program exprocl *)

210 WRITE('Enter character: ') {$w-};

220 READLN (prcharac) ;

230 WRITE('Enter # of char. to display: ');
240 READLN(times) {$w+},

250 graph(times,prcharac);

260 END. (* program exprocl *)

The order, number, and type of the actual parameters must
correspond exactly to the order, number, and type of the
formal parameters. Actual parameters are separated by
commas. Formal parameters of the same type can be listed
together, separated by commas, with the type specified once
at the end of the list. Formal parameters of different types
must be separated from each other by semicolons.

For example, if the procedure f inddatais passed three
integers, one real number, and a character, the following
formal declaration could be used.

150 PROCEDURE finddata(numberl, number2,
160 number3: INTEGER; realval :REAL;
charactr ;CHAR) ;

The actual parameters in a call to this f i nddat a procedure
must include three integer expressions, a real expression, and
acharacter expression, such as the one shown below.

finddata(5,10,15,4.5,'a");

The identifiers declared after a program heading and before
any procedure or function declarations are called global
identifiers. They may be used in any part of the program,
including within a procedure or function.

Anidentifier declared in a procedure or function is called a
local identifier and can be used only within the procedure or
function in which it is declared. A local identifier is undefined
outside its procedure or function.

Alocal identifier supersedes a global identifier. If the same
identifier is declared to be both global and local, a reference
to the identifierin the procedure or function whereit is
declared accesses the identifier declared in that procedure or
function.

Chapter 7—Procedures and Functions

Declaring the same identifier as both global and local, though
is not a good programming practice and can lead to problems,
as described later in this section.

Inthe following program, for example, the identifier t imes
defined immediately after the program headingis a global
variable and can be used anywhere in the program except in
graph. The identifier t imes defined in the procedure graph
isalocal variable and can be used only in the procedure
graph. While the procedure graph is executing, the value of
itslocal variable t imes increments from 1 through the input
number. The global variable t imes remains unchanged.

100 PROGRAM exprocl;

110 VAR times: INTEGER;

120 prcharac:CHAR;

130 PROCEDURE graph(count: INTEGER;
charactr:CHAR);

140 VAR times: INTEGER;

150 BEGIN {%$w-}

160 FOR times:=1 TO count DO

170 WRITE (charactr); {$w+}

180 WRITELN;

190 END; (* graph *)

200 BEGIN (* program exprocl *)

210 WRITE('Enter character: ') {$w-};

220 READLN(prcharac);

230 WRITE('Enter # of char. to display: ')

240 READLN(times); {$w+}

250 graph(times,prcharac);

260 END. (* program exprocl *)

Passing Parameters can be used to pass information to and from a

Information procedure or function. A parameter that only passes
information to a procedure or a function is called a value
parameter. Using a value parameter resultsin a one-way
transfer of data. A value parameter can be a constant, a
variable, or an expression whose value is passed to a
procedure or function.

A parameter that passes information to a procedure and
returns information back to the calling program is called a
VAR (orreference) parameter. Using a VAR parameter
resultsin atwo-way transfer of data. A VAR parameter must
be a variable because information is stored in it.

132

Chapter 7—Procedures and Functions

One-Way Transfer A value parameter is declared by including the name of the
parameter and its type in a procedure or function heading.
The interpreter reserves space for each value parameterin
the heading. When a procedure or function is called, the
value of each actual parameterin the callisstored in its
corresponding value parameter.

If an actual parameter corresponds to a value parameter, its
value is not affected by the called routine. When a procedure
or function changes a formal parameter that is a value
parameter, its corresponding actual paramet - remains
unchanged.

‘Two-Way Transfer Proceduresand functionsare muchmo. seful however,
when they can return informationtothe .. *ngp.ogram.
Normally, if one valueis calcuiated by a progra... seciion and
returned to the calling progra:.. thesectionisdeclared a
function. Whensmultiple values are returned, the section is
declared a procedure.

ser-Defined Inafunction, the function name appearslike a variable and is

nctions assigned a value. This value must be of the same data type as
was declared for the function. Suppose you need to
determine which of three real values is largest. The following
program acceptsthree real values and uses a function to
determine which value is largest. The function name is then
assigned the value of the largest real number.

100 PROGRAM example;

110 VAR numl,num2,num3:REAL;

120 FUNCTION largest(vall,val2,val3:REAL) :REAL;
130 VAR greater,greatest :REAL;

140 BEGIN

150 IF vall>val?2

160 THEN greater:=vall

170 ELSE greater:=val2;

180 IF greater>val3

190 THEN greatest:=greater
200 ELSE greatest:=val3;
210 largest:=greatest;

220 END; (* function fargest *)
230 BEGIN

240 WRITE('Enter three values: ') {$w-}.
250 READLN (numl , num2,num3) {$w+};
260 WRITELN('Largest #:

largest (numl,num2,num3)) ;
270 END. (* program example *)

E 133

Chapter 7—Procedures and Functions

Note that a function can have a value that isan INTEGER,
REAL, BOOLEAN, or CHAR type and yet have parameters
that are of another type. In the following example, the
function same has parameters that are three real values but
the value that it returnsis a Boolean value. Three real values
are input to the function same and if any two of the three
sides are equal, the function has a value of TRUE. If no two of
the three sides are equal, the function has a value of FALSE.
If the value of same is TRUE, a message is displayed that at
least two sides are equal. If the value is FALSE, a message is
displayed that no sides are equal.

100 PROGRAM triangle;

110 VAR numl,num2,num3:REAL;

120 FUNCTION largest(vall,val2,val3:REAL) :REAL;
130 VAR greater,greatest:REAL;

140 BEGIN

150 IF vall>val2.

160 THEN greater:=vall

170 ELSE greater:=val2;
180 |IF greater>val3

190 THEN greatest:=greater
200 ELSE greatest:=val3;

210 largest:=greatest,;

220 END; (™ function largest *)

230 FUNCTION same(numl, num2, num3:REAL) :BOOLEAN:
240 BEGIN

250 same:=TRUE;

260 IF ABS(numl-num2) >0.0001

270 THEN

280 IF ABS (num2-num3) >0.0001

290 THEN

300 IF ABS(numl-num3) >0.0001
310 THEN same:=false

320 END; (* function same *)

330 BEGIN

340 WRITE('Enter three values: ') {$w-};
350 READLN(numl,num2,num3) {$w+};
360 WRITELN('Largest # entered: ',

370 largest (numl ,num2,num3)) ;
380 IF same(numl,num2,num3)
390 THEN

WRITELN('At least 2 sides are equal’)
400 ELSE WRITELN('No sides are equal’');
410 END. (* program triangle *)

134

“hapter 7—Procedures and Functions

er-Defined
rocedures

Caution: If you use a variable name in the parameter list of a
user-defined function called by a user-defined function or
procedure, and then use that same variable name within your
program, unexpected and incorrect results can occur. The
following program shows an example of this mistake.

100 PROGRAM badresl|t;

110 VAR i, j:INTEGER;

120 FUNCTION funcl(i:INTEGER):INTEGER;
130 BEGIN

140 funcl:=i*2;

150 END; (*funcl*)

160 BEGIN (*badreslit*)

170 i=4,
180 j:=funcl(funcl(i));
190 WRITELN(1= ",i," J= ",j);

200 END. (*badres|t*)

The function call in line 180 produces an erroneous result
because the variable i is used both in the main program and
in the parameter list of func1 called by a function (in this
case, itself). To correct this program, change the variable i in
lines 120 and 140 to a unique name such as f i. You could also
use a different variable within the program, such as k in lines
110, 170, 180, and 190.

This error only happens when a function is used in the
parameter list of a function or procedure call and the same
variable is used both in the parameter list and in the function
or procedure referenced.

To avoid this kind of problem, use unique variable names in
each section of a program if you are using more than one user-
defined function.

When multiple values are returned from aroutine, the
routine should be declared a procedure. Parameters are used
to transfer information out of a procedure by declaring them
in the procedure heading as VAR (for variabie) parameters. A
VAR parameter includes every.identifier between the
reserved word VAR and the next colon and type identifier.
The reserved word VAR can appear more than once ina
procedure heading.

For example, in the procedure declaration

PROCEDURE ex (VAR angle:REAL;count: INTEGER;
VAR sidel,side2,side3:REAL);

135

T

Chapter 7—Procedures and Functions 1
J
!
!
:

136

the identifier angl e isa VAR parameter whose type is REAL,
the identifier count isa value parameter whose type is }
INTEGER, and the identifiers sidel, side2, side3 are VAR §
parameters whose types are REAL. 3
l

The interpreter allocates no storage locations for VAR
parameters; the memory location of each actual parameter
the procedure call is used as the memory location of its
corresponding formal VAR parameter. Thus, the calling
program references a memory location by the identifier liste
as the actual parameter, whereas the procedure references
the same location by the identifier listed as the formal VAR
parameter.

i
:
4

For example, if the procedure ex is declared as shown

PROCEDURE ex (VAR angle:REAL;count: INTEGER;
VAR sidel,side2,side3:REAL);

!
k
{
3
b
1
;
)
!
i

and the procedure is called by the following statement
ex(radian,quantity,valuel, value2 value3);

the variables ang! e and rad i an share the same location as d
the variables sidel and valuel, side2 and value2, and
side3 and value3.The variable count isallocated memory
space when the procedure is called and the value of

quant ity isstoredthere.

If a procedure changes an identifier that is declared tobe a
VAR parameter, the value in that location, which is also the
location of the actual parameter, is changed. When control
returns to the calling program, the value of the actual
parameter is what was stored there by the procedure.

Note that information passed in a VAR parameterissaid to be
passed by reference. Because the value of a VAR parameter
can be changed by a procedure, all actual parameters
corresponding to VAR parameters must be variables.

VAR parameters and value parameters can appear in any
orderin a procedure heading. The actual parametersin the
procedure call must be in the same order.

Suppose that in the previous program you want to sort from
largest to smallest the real numbers that are input. The
program would then contain a procedure that returns three
valuesin the VAR parameters passed toit.

Chapter 7—Procedures and Functions

100 PROGRAM triangle;
110 VAR numl,num2,num3:REAL;
120 PROCEDURE largest (VAR sidel,side2,

side3:REAL) ;
130 VAR temp:REAL;
140 BEGIN
150 IF sidel<side2
160 THEN
170 BEGIN
180 temp:=sidel;
190 sidel:=side2;
200 side2:=temp;
210 END;
220 IF sidel<side3
230 THEN
240 BEGIN
250 temp:=sidel;
260 sidel:=side3;
270 side3:=side2;
280 side2:=temp;
290 END
300 ELSE
310 IF side2<side3
320 THEN
330 BEGIN
340 temp:=side3,;
350 side3:=side2;
360 side2:=temp;
370 END;
380 END; (* procedure largest *)
390 BEGIN

400 WRITE('Enter three sides: ') {$w-};

410 READLN(numl , num2,num3) {$w+};

420 largest (numl, num2,num3) ;

430 WRITELN('Sides are ',numl:7:2,
num2:7:2,num3:7:2) ;

440 END. (* program triangle *)

Note that the declaration
PROCEDURE largest (VAR sidel,side2,side3:REAL);

* Definessidel, side2,and side3 as REAL values.

* Declares sidel, side2, and s i de3 as variables within the
procedure largest.

s Defines sidel, side2, and side3 as VAR parameters, thus
allowing the values of the corresponding actual parameters
tobe changed.

137
——

Chapter 7—Procedures and Functions

Array Parameters

138

[f a section of program changes the value of a global
pararneter or performs input or output, the section has side
effects(that is, the program section has an effect other than
through its parameters). It is better to avoid side effects wher
possible by adding parameters. However, performing input
and output in a procedure or function cannot be avoided by
using more parameters.

Tosummarize, parameters used only to pass information toa
procedure are called value parameters and can be any
expression, including a constant or a variable. Parameters
that are used both to pass information to a procedure and to
return values from the procedure are called VAR (or
reference) parameters, and must be variables.

A procedure or function may not be passed as a parameterto

- another routine. Constants, elements of a packed array, and

FOR loop counters may not be passed as VAR parameters. A
file (discussed in chapter 8) can be passed only asa VAR
parameter.

An array identifier can appear as the parameter of a
procedure. Individual elements of an array can be passed toa
procedure as well as constants, variables, and expressions.
Any of the following types of reference to the elements of an
array can be used in acall to a procedure.

realval [5]

realval [8]1%0.5+6

realval[index]

Note that the data type of a parameter must be included in
the procedure heading. An array description such as
ARRAY[1..n] OF type;, however, isnotallowed. Anarray
type must be declared and used in the procedure heading.

For example, the heading

(* ERROR %)

150 PROCEDURE sums (grade:ARRAY[1..25] OF
INTEGER) :

(* ERROR)

Chapter 7—Procedures and Functions

is not allowed and causes an error. The array grade can be
declared atype asshown below and its declared type
included in the heading.

150 TYPc arraypar=ARRAY[1..25] OF INTEGER;
180 PROCEDURE compute(grade:arraypar);

Ina procedure, an array parameter should be specified as a
VAR parameter. The procedure can access the array in the
calling program, rather than copying the array into the
procedure. Memory space is saved by passing an array asa
VAR parameter.

Suppose you have three salespersons’ records, each of which
contains the number of items that the individual hassold in
each quarterof ayear.

Salesperson #1

Item 1 Item 2
Quarter | 20 35
Quarter 2 60 75
Quarter 3 30 28
Quarter4 38 59

Salesperson #2

Item 1 Item 2
Quarter | 30 45
Quarter?2 34 87
Quarter 3 40 79

Quarter 4 56 43

Chapter 7—Procedures and Functions

Salesperson #3

Item 1 Item 2
Quarter 1 25 49
Quarter 2 83 54
Quarter 3 67 98
Quarter 4 23 56

Suppose you want to calculate the total quantity of sales for
each salesperson, the quarterly sales for each salesperson,
and the total amount of sales per item. The following program,
accepts the data from the three salespersons’ records and
uses arrays to calculate the sales amounts.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

140

PROGRAM salesrec;
CONST quarter=4;
items=2;
peop!le=3;
TYPE amount=ARRAY[1l. .quarter,l..items,1l. .people] OF INTEGER;
cost=ARRAY[1..items] OF REAL;
VAR sales:amount;
price:cost;
netsales,qrtsales, itemsale:REAL:
totsales:REAL;
count : INTEGER;
PROCEDURE item(part: INTEGER; VAR sarr:amount;
VAR salepr:cost;VAR tsales:REAL);
VAR season,person: INTEGER;
BEGIN
tsales:=0.0;
FOR person:=1 TO people DO
FOR season:=1 TO quarter DO
tsales:=tsales+sarr[season,part.person]*salepr[part];
END; (* procedure item *)
PROCEDURE yearpart(season: INTEGER; VAR sarr:amount;
VAR salepr:cost; VAR gsales:REAL);
VAR part,person: INTEGER; ’

Chapter 7—Procedures and Functions

330 BEGIN

340 gsales:=0.0;

350 FOR part:=1 TO items DO

360 FOR person:=1 TO people DO

370 gsales:=gsales+sarr[season,part,person]*salepr[part];
- 380 END; (* procedure yearpart *)

390 PROCEDURE total (person:INTEGER; VAR sarr:amount;

400 VAR salepr:cost;VAR tsales:REAL);

. 410 VAR season,part: INTEGER;

: 420 BEGIN

;. 430. tsales:=0.0;

- 440 FOR season:=1 TO quarter DO

E 450 FOR part:=1 TO items DO

{ 460 tsales:=tsales+sarr[season,part,person]*salepr[part];
. 470 END; (* procedure total *)

i 480 PROCEDURE initiliz(VAR sarr:amount;

E 490 VAR salepr:cost);VAR season,part,person: INTEGER;

= 500 BEGIN

¥ 510 FOR person:=1 TO people DO

| 520 BEGIN
Be 530 WRITELN(' Enter sales for person #',6person);
& 540 FOR season:=1 TO quarter DO
550 FOR part:=1 TO items DO

£ 560 BEGIN

L 570 REPEAT

& 580 WRITE(' Quarter ',6season,' item ',
f part,':") {$w-};

i 590 READLN(sarr[season,part,person]);

600 UNTIL sarr[season,part,person] IN[1..32767];
8 610 END; {S$w+}

2 620 END;

i 630 FOR part:=1 TO items DO

%640 BEGIN

& 650 REPEAT

E8.660 WRITE(' Enter price of item ', part) {$w-};
%670 READLN(salepripart]);

._'680 UNTIL NOT(salepr[part]<0.0)
i 685 OR(salepr[part]>10000.0);

E(program continued on next page)

i;
E

141

Chapter 7—Procedures and Functions

690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880
890
900
910

END; {S$w+}
END; (* procedure initiliz *)
BEGIN (* program body *)
initiliz(sales,price);
totsales:=0.0;
FOR count:=1 TO people DO
BEGIN
total (count,sales,price,netsales);
WRITELN('Sales for # ',count,’': $' . netsales:12:2);
totsales:=totsales+netsales;
END; (™ count:=1 to people *)
WRITELN('Total sales: $', totsales:12:2);
FOR count:=1 TO quarter DO
BEGIN
yearpart (count,sales ,price,qgrtsales);
WRITELN(' Quarter ',count,’' sales: $' .qrtsales:12:2);
END; (* count:=1 to quarter *)
FOR count:=1 TO items DO
BEGIN
item(count ,sales,price,itemsale);
WRITELN('ltem ',count,' sales: $',itemsale:12:2);
END; (* count:=1 to items *)
END. (* program salesrec *) 1

142

[f the data in the preceding examples is entered for the sales
persons and $1000.00 and $2000.00 are entered for the prices |
of items 1 and 2, respectively, the output is as shown below.

Sales for #2: $ 668000.00
Sales for #3: $ 712000.00
Total sales: $ 1922000.00
Quarter 1 sales: $ 333000.00
Quarter 2 sales: % 609000.00
Quarter 3 sales: % 547000.00
Quarter 4 sales: $ 433000.00
Item 1 sales: §$ 506000 .00
ltem 2 sales: $ 1416000.00

i
Sales for #1: $ 542000.00 %
]
)

Chapter 7—Procedures and Functions

The FORWARD In Pascal, a procedure or function can call another procedure

Declaration or function only if it has already been declared in the
program. However, when many procedures and functions are
called, it may be impossible to define each one before it is
called. Therefore, Pascal provides a declaration called
FORWARD that allows you to use a procedure or function
identifier in a routine before it has been defined.

-*
The reserved word FORWARD is written in place of the
procedure or function block. If this procedure or function has
parameters, they are specified in the FORWARD declaration
and not in the declaration that contains the routine’s block.
A procedure or function identifier that appearsinthe
FORWARD declaration may be used even though its program
block has not been defined previously.

In the example below, the procedure change can use
procedure al or a2 or the function compute even though the
blocks for these routines have not been defined at that point.

100 PROGRAM main;

110 PROCEDURE al(largest:REAL) ; FORWARD;

120 PROCEDURE a2(smal lest:REAL) ; FORWARD;

130 FUNCTION compute(x,y:REAL) :REAL; FORWARD;
140 PROCEDURE change(deg,rad:REAL) ;

150 VAR factor:REAL;

160 val ,yval :REAL;

170 BEGIN
al(xval);
factor:=compute(xval ,yval);
a2(yval);

ENb; (* procedure change *)
PROCEDURE al;
BEGIN

END: (* procedure al *)
PROCEDURE a2
BEGIN

.END; (* procedure a2 *)

(program continued on next page)

143

Chapter 7—Procedures and Functions

FUNCTION compute;
BEGIN

compute:= real_expression

END; (* function compute *)
BEGIN

END. (* main *)

Intrinsic Pascal provides a number of pre-defined procedures, called

Procedures intrinsic procedures, which can be accessed by writing the
name of the procedure in place of a statement. The intrinsic
procedures DELETE, INSERT, and STR are used with string
data. The intrinsic procedures FILLCHAR, MOVELEFT, and
MOVERIGHT can be used with multiple types of arguments.

String Procedures The followingstring procedures are used to manipulate
strings.

DELETE(string-variable,integer-expressionl,integer-

expression2)
returns in string-variable the string that results
when the number of characters specified by integer-
expression2 are omitted from string-variable
starting at the position specified by integer-
expressionl. Both integer-expressionl and integer-
expression2 must be positive integers. If the number
of characters specified by integer-expression2is
more than the number of characters that can be
deleted, no characters are deleted.

INSERT(string-expression,string-variable,integer-
expression)
inserts string-expression into string-variable
starting at the position specified by integer-
expression.

STR(integer-expression,string-variable) -
returns in string-variable the string representation
of integer-expression.

144

Chapter 7—Procedures and Functions

The following program uses the INSERT procedure to insert
into the string he | | 0 a string entered from the keyboard. The
string hel 10 isthen displayed. The number of unallocated
bytes returned by MEMAVAIL is represented as a string by
the procedure STR. The procedure INSERT then inserts the
string into numbytes. The DELETE procedure then deletes
the inserted characters from numbytes, and MEMAVAILis
called to determine how many unallocated bytes of memory
are left. The number is changed to its string representation by
STR and inserted into numbytes, which is then displayed.

. 100 PROGRAM greeting;
i 110 VAR instr:STRING[24];

120 hel lo:STRING[100];

130 numbytes:STRING[100];

140 nbytes: INTEGER;

150 strnum:STRING;

160 BEGIN

170 hello:="Hi there, ! You are using Pascal

on a computer!’;
180 numbytes:='You have bytes of memory left';
190 WRITE('Enter your name: ') {$w-};
200 READLN(instr) {$w+};
210 INSERT(instr,hello,11);
220 WRITELN(hel l0) ;
230 nbytes:=MEMAVAIL;
- 240 STR(nbytes,strnum);
i 250 INSERT (st rnum, numbytes, 10) ;
260 WRITELN(numbytes) ;
: 270 DELETE (numbytes, 10, LENGTH(strnum)) ;
: 280 nbytes:=MEMAVAIL;
1290 STR(nbytes,strnum);
1300 INSERT (st rnum, numbytes, 10) ;
1310 WRITELN(numbytes);
{320 END. (* greeting *)

145

Chapter 7—Procedures and Functions

Array Procedures The array procedures are normally used with arrays;

146

however, these procedures may be used with any other data 1
types (except files). These procedures are FILLCHAR, i
MOVELEFT, and MOVERIGHT. ‘J,
2
;5

FILLCHAR(multi-variable,integer-expression,character-
expression) ;
FILLCHAR fills a specified number of bytes starting
at the location specified by multi-variable with the ;
character specified by character-expression.
Integer-expression specifies the number of bytes
that are filled. FILLCHAR canbe used tofilla
specific number of character positions with blanks
Or Zeros.

MOVELEFT(multi-variablel ,multi-variable2, integer-
expression)
moves the number of characters specified by
integer-expression from multi-variablel to multi-
variable2.

MOVERIGHT(multi-variablel ,multi-variable2,integer-
expression)
moves the number of characters specified by
integer-expression from multi-variablel plus
integer-expression minus 1 to multi-variable2 plus
integer-expression minus 1.

In the example on the next page, FILLCHAR fillsthe array ch |
with asterisks and displays the array. MOVELEFT copies 13
bytes(characters)of pac2 into pacl. The first character of
pac2ismovedto the 31st characterof pacl, the second
character of pac2 is moved to the 32nd character of pacl,
and so on until 13 characters have been moved. The arrays
pacl and pac?2 are then displayed.

MOVERIGHT copies 19 bytes of pacl starting at |
pacl[11]+19minuslintopacl startingat pacl(6]+19
minus 1. The characterinpacl[11] + 19 minus 2 isthen
movedinto pacl[6] + 19 minus 2, the characterin
pacl{11]+I9minus3topacl[6] +19minus3,andsoon
until 19 bytes have been moved. The array pacl isthen
displayed. Note that if a byte is modified and its contents then
moved, the new character inthe byte is moved.

g Chapter 7—Procedures and Functions

. 100 PROGRAM example;

} 110 TYPE charray=PACKED ARRAY[1..40] OF CHAR:
g 120 VAR ch:charray;

130 pacl:PACKED ARRAY[1..43] OF CHAR;

j40 pac2:PACKED ARRAY[1..13] OF CHAR:

1150 BEGIN i

£160 FILLCHAR(ch,40, "' *");

p170 WRITELN('ch is ',ch);

yBO pacl:="move characters from the left or the right. ';
»ﬂQO pac2:='one at a time';

§200 MOVELEFT (pac2,pacl[31],13);

£210 WRITELN(pacl);

;20 WRITELN(pac2) ;

8230 MOVERIGHT (pac1[11],pacl[6],19);

£240 WRITELN(pacl) ;

250 END. (* example *)

Output:

Ch IS A s s e Xe e Ze e s S T X6 3 ge xr s de 30N de 2 fe o Yo v x5 Ze ge o o gr g o Nr e s g
move characters from the left one at a time
one at a time

move left left left teft left one at a time

Caution: FILLCHAR, MOVELEFT, and MOVERIGHT
explicitly perform as you tell them. You can have FILLCHAR,
MOVELEFT, and MOVERIGHT write over system data and
thus have {o reset the computer Lo continue operation. Use
caution when you specify parameters for these procedures.

Recursion In Pascal, a procedure or a function can call itself, a feature
known as recursion. A routine cannot call itself indefinitely,
however, or an overflow condition occurs. A recursive
routine must contain a method of termination. When the
condition of termination is met, the recursive routine returns
control to the point where the procedure or function was
originally called.

A useful example of a recursive routine application is
calculating a factorial. A factorial is defined as the product of
all the positive integers up to a given integer, including the
product of the given integer. The factorial of aninteger is
written with the integer followed by an exclamation mark.
For example, the factorial of 4 is written as 4!.

By definition the factorial of zero is 1. The factorials of the
integers from 1 through 5 are computed as shown on the next
page.

147

Chapter 7—Procedures and Functions

148

ol

Given Integer Factorial

1

1

2 1*2

3 1*2*3

4 1*2*3*4

5 1*2*3*4*5

To use arecursive function to find the factorial of an integer,
you must first define the function as equal to 1 when the
givenintegeris 1. Thusthe function factoral (1) isdefined
tobeequalto 1 (factoral =1). Thefactorial of 2 then
becomes 1*2, which can be writtenas factoral (1)*2. In
the factorial of 3, 1*2*3, the product 1*2 can be replaced by
factoral (2) and 1*2*3 becomes factoral (2)*3. The
table below illustrates how a factorial is found for the first
five positive integers.

Integer

Factorial

Function

Function

Computation

1*2

factoral (2)

1*2
factoral(1)*2

1*2*3

factoral (3)

1*2*3
(1*2)*3
factoral(2)*3

1*2*3%4

factoral (4)

1*2*3*4
(1*2*3)*4
factoral(3)*4

1%2*3*4*5

factoral (5)

1*2*3*4*5
(1*2*3*4)*5
factoral(4)*5

. Chapter 7—Procedures and Functions

From the examples above then, the general formula
factoral(n)=factoral(n-1)*n

can be derived for computing the factorial of an integer. The
function is written as a recursive function in the following
program.

100 PROGRAM recursiv;

110 VAR intnum: INTEGER;

120 FUNCTION factoral(n: INTEGER) : INTEGER;
130 VAR fact:INTEGER;

140 BEGIN

150 IF n>=1

160 THEN fact:=factoral(n-1)*n
170 ELSE fact:=1;

180 factoral:=fact;
190 END; (* factorat *)
200 BEGIN (* program body *)

] 210 REPEAT
‘ 220 WRITE('Enter integer (1-7): ') {$w-};
230 READLN(intnum) {$w+};

240 UNTIL intnum IN[1..7];

250 WRITELN(intnum,’' factoral is: ',
factoral (intnum));

260 END. (* program recursiv *)

Note that in the program, the REPEAT loop continues until a
number from 1 through 7 is entered.

Another example of a recursive routine isshown in the
following program in which text is entered from the keyboard
and displayed in reverse order.

100 PROGRAM transpos;

110 PROCEDURE chario;

120 VAR charactr:CHAR;

130 BEGIN (* procedure chario *)
140 READ(charactr);

150 IF charactr<>' '

160 THEN chario;

170 WRITE(charactr);

180 END; (* chario *)

190 BEGIN (* program transpos *)

(program continued on next page)

149

Chapter 7—Procedures and Functions

200 WRITELN('Enter word foilowed by a blank: ');

210 chario;
220 WRITELN;

230 END. (* program transpos *)

Review
Chapter 7

150

In this program, the recursive procedure char io is used to
read and display some entered characters. When chariois
first called, a characterisread into charactr.If the _
character is not a blank, chario is called again. The character :
read this time is stored in the variable that is part of the first
recursive callto char i o. The following paragraphs describe
how the characters of the string ‘hello’ are read and saved.

In the first call to the procedure char i o, the character ‘h’ is
stored in the variable charactr that islocal to this call of
chario (for simplicity, this variable isreferred to as
charactr-1).

Because the character was not a blank, another call to
charioismade and the character ‘e’ isread. Thischaracteris
stored in the variable charactr that islocal to this call of]
chario(charactr-2).Charioiscalled tostore the
characters ‘I, ‘I’, and ‘0o’ in the variables charactr-3,
charactr-4, charactr-5,local to the 3rd, 4th, and 5th calls |
to chario, respectively. :

The 5th call to chariocalls char i o the 6th time toread ;
another character when the blank character is read. This 6th j
callto chariois now finished and thus returns to its caller
(the 5th callto chario).

The WRITE statement follows this call. The characterinthe
variable charactr thatislocal to the 5th callis the character
‘o’. This 5th call is complete and control returns to the 4th
call, which executes the WRITE statement and displays the
letter ‘I'. Each call to char i o returns to the previous call until -
theletters ‘I’, ‘e’, and ‘h’ have been displayed.

After the first call is finished, control is returned to the main
program block and the program terminates.

1. A procedure contains two parts. They are

1
|
|
]
'S

Chapter 7—Procedures and Functions

2. A statement in a program body that contains the name of a
procedure is known as a

3. Write a program that displays the following. Use two
procedures to define the output.

wﬁvmconceptv#vxk

¥ % % Qummation * * *
X

xR

e A e oxe W ¥

ur;nwconceptvttw

%

* * * Qummation * * *
L

L

LR L L

4. If the following declarations are made in the program
examp | e and the procedure ex1, does the procedure use
the value of the global variable dup| icat in line 300?

100 PROGRAM example;
110 VAR duplicat:REAL;

290 PROCEDURE exl:
300 VAR a,duplicat:REAL;
310 BEGIN

350 a:=duplicat;

Chapter 8—File Handling

Introduction

Data Format

152

- KEYBOARD referstotheinput device. If you specify that ‘

Pascal programs use input and output statements to 3
communicate with the keyboard, the display, and peripheral §
devicessuch as a printer. Input and output statements
transfer data to and from a file (a collection of data that hasa 3
declared name).

When the computer is sending data to or receiving data from

an external device, the I/0 display indicator is turned on. You §
cannot use the keyboard at this time (including the OFF key). ¢
If a file is open when you press the OFF key, the file is
automatically closed before the computeris turned off.

When you use a LIST, OLD, or SAVE command, the Pascal
interpreter allows you to use a printer or a mass-storage

device by referencing the device’s code number. Saving a
program and executing a stored program are discussed in this #
chapter under ‘‘Program Storage and Execution.”

!
i
When you run a Pascal program, the interpreter i
automatically opensthree files for your program. These files 3
are defined to be files of type INTERACTIVE and are called
INPUT, OUTPUT, and KEYBOARD.

INPUT refers to the input device. If you do not
’ specify otherwise in an input statement, the
interpreter uses the console device to obtain
data. The console is defined to be the display
and keyboard combined. When an input
statement uses the console device, any
character typed at the keyboard is displayed. g

e Bt et i W

an input statement uses KEYBOARD, any i
character typed at the keyboard is not E
displayed and therefore, the cursor does not
move.

OUTPUT refers to the output device. If you do not :
specify otherwise in an output statement, the
interpreter uses the console device to display
data.

When a Pascal program stores, updates, or writesdatatoa
peripheral device, the data isrecorded in ASCII charactersto
afile. Allfiles processed by Pascal statements must be in
ASCII format.

Chapter 8—File Handling

‘Data Records

File Organization

Initializing a
‘Mass-Storage
‘Medium

When aninput or output statement accesses a file, it retrieves
or stores arecord of data. A record consists of fields of data.
The value of each variable in an output statement is written
inafield of arecord.

The maximum length of a record varies with the peripheral
device being used. Pascal uses a default specification for each
device. Fora printer device, the maximum record length is 80
bytes.

When a WRITELN statement is executed, the values are
written to an output buffer with an end-of-line marker that
sets the end of the record. The length of a record written by
WRITELN is the number of characters written by WRITELN,
providing the number of characters is not greater than the
maximum length allowed for the peripheral device. If
WRITELN attempts to write a record longer than one allowed
for the device, the record is repeatedly broken into records
that are the maximum allowed until the last record has a
length of the maximum or less.

When a WRITE statement is executed, the values are written
to an output buffer. The WRITE statement allows the next
output statement to write its fields of data after the previous
statement’s data. The data is not actually transferred to the
device until either the maximum number of characters
allowed for the record length of the device isreached in the
buffer or untila WRITELN, READ, or READLN statement is
executed.

With TI-74 Pascal, files are accessed sequentially; data must
be read in sequence from beginning to end.

If you are using a mass-storage device other than a cassette
recorder, you must use the FORMAT command to initialize a
new medium before you can use it. For example, the
command

FORMAT 110

initializes or formats the medium on peripheral device 110.
Note that if you format a medium that already has data on it,
the existing data is lost. Refer to the peripheral manuals for
information on formatting other media.

153

Chapter 8—File Handling

Deleting a File

File-Processing
Keywords

File Declaration

Opening and
Closing a File

154

The DEL command can be used to delete a file from a mass-
storage device. For example, the command

DEL '1.payroll’
deletesthe file payrol | ondevice 1.

Pascal provides the following statements and declarations for
file handling.

If you want to input or output data from a device other than
the console, you must declare an identifier for the device file
and the type of the file in a VAR declaration. In T1-74 Pascal,
the type of a file must be defined to be type TEXT.

For example,
VAR printer:TEXT;

declares the file-identifier pr inter to be a file of the
predefined type TEXT.

A TEXT file consists of a sequence of lines, each of whichisa
record. Each line consists of a sequence of characters
terminated by an end-of-line marker. After the last end-of-
line marker is an end-of-file marker.

Pascal provides the intrinsic procedures RESET and
REWRITE to open a file and the intrinsic procedure CLOSE to
save ordelete a file. RESET and REWRITE open a file and
specify the identifier that is used in the program to access the
file. If RESET or REWRITE attempts to open a file that is
already open, an error occurs.

In this manual, the identifier associated with an open file is
called file-identifier. A file-identifier must be declared in the
program as type TEXT.

The RESET Procedure
RESET is used to open an existing file for input. The file is
positioned to the first record. For example, the statements

VAR filel:TEXT,;
BEGIN
RESET(filel,’7.address');

Chapter 8—File Handling

declare the file-identifier f i | el as a TEXT file, open the file
named address located on device 7 with the file-identifier
filel, and position the file to the first record.

You can also use RESET to position a file back to the
beginning of the file, but you must first close the file. The
statements

130 VAR filel:TEXT;

140 x:REAL;

150 BEGIN

160 RESET(filel,’'l.address');
170 READLN(filel x);

180 CLOSE(filel);

190 RESET(filel,'l.address'):

openthe file address on device 1 with the file-identifier
filel, read one value from the file, close the file, and then
position the file back to the first field in the first record.

After you close a file, you can use the file-identifier to
open another file as well as open the file with another
file-identifier.

If you attempt to open a write-only device such as a printer
with RESET, an error occurs.

The REWRITE Procedure

REWRITE is used to open a file for output. If the file does not
already exist, REWRITE creates a file containing only the
end-of-file marker. If the file already exists, REWRITE
deletes the existing file and creates a new file containing only
the end-of-file marker.

Forexample, the statements

130 VAR filel:TEXT;
140 BEGIN
150 REWRITE(filel, 7. address');

opena file with a file-identifier of fi el ondevice 7. If the
file address already exists, REWRITE deletes the file
address and creates anew file address containing only an
end-of-file marker.

[f you attempt to open a read-only device with REWRITE, an
€rror occurs.

155

Chapter 8—File Handling

File Input
and Output

156

The CLOSE Procedure

CLOSE is used to close an open file. After the file is closed,
the file-identifier used to open the file is then no longer
associated with it. Certain options may be included in a call
to CLOSE, as shown below.

Filename opened with: RESET REWRITE

-

CLOSE(file-identifier) closes the file deletes the file

CLOSE(flle-identifier, LOCK) closes the file closes the file

CLOSE(file-identifier, PURGE) deletes the file deletes the file

Generally, to close and save a file, you should use a CLOSE as
shown below.

CLOSE(file_identifier, K LOCK)

Note that if you attempt to close a file for a write-only device
(such as a printer) with CLOSE(file-identifier) or CLOSE(file-
identifier, PURGE), an error occurs.

When a Pascal program finishes normal execution, the
interpreter automatically closes any open files, thus
preservingthe contents of the files. Files already closed in a
program are not affected.

In Pascal, the EOLN and the EOF functions are used to
determine the status of the end-of-line or end-of-file
character. The routines READ, READLN, WRITE, and
WRITELN are provided for accessing elements of a file.

The EOLN and EOF Functions

The EOLN function is used to test the status of the end-of-line
marker. Fora TEXT file, the EOLN function returns a TRUE
result if the next character to be read is the end-of-line
character. For an INTERACTIVE file (INPUT or KEYBOARD)
the EOLN function returns a TRUE result if the end-of-line
character was the last characterread.

The EOF function enables you to test the status of the end-of
file marker. Fora TEXT file, the EOF function returns a
TRUE result if the next character to be read is the end-of-file
marker. Note that the EOF function cannot be TRUE at the

§f
:Chapter 8—File Handling

end of the last line; the EOF function is TRUE after the last
end-of-line character has been read. Therefore, a READLN
statement should precede an EOF test.

For an INTERACTIVE file, there is no end-of-file marker.

File Input with READ and READLN

The READ and READLN statements can be used to read
values from a file by preceding the list of variables with the
file-identifier. If no file-identifier appears before the list of
variables, the interpreter assumes that input is from the file
INPUT or the keyboard. READ and READLN read the
different data types from a file the same way they read values
from the keyboard (except as noted above for the end-of-file
marker and end-of-line marker).

A file-identifier listed in READ or READLN must be defined
asaTEXT file. A Boolean type variable cannot appearina
READ or READLN.

The following program transfers a line from file fi lel to
file2. Notethatthe EOLN function is used to determine
when the end of the line has been reached. EOLN is TRUE
when the input buffer pointer is pointing to the end of the
line and FALSE otherwise.

100 PROGRAM | inetran;

110 VAR ch:CHAR;

120 filel,file2:TEXT;

130 BEGIN

140 RESET(filel,’'l.datal’);
150 REWRITE(file2,'2.data2');
160 WHILE NOT EOLN(filel) DO

170 BEGIN
180 READ(filel,ch):
190 WRITE(file2.ch);

200 END; (* while *)
210 WRITELN(file2);

220 CLOSE(filel,LOCK):
230 CLOSE(file2,LOCK) ;
240 END. (* tlinetran *)

The program on the next page transfers an entire file from
filelto file2. Notethatafterthe last characteronalineis
read, the input cursor is pointing to the end-of-line marker. A
READLN should be executed to move the cursor to the first
character in the next line.

157

Chapter 8—File Handling

158

The end-of-file condition is TRUE only after the last end-of-
line characterisread. Therefore, atest foran end-of-file
condition should be made aftera READLN hasbeen
executed. When the end-of-file condition becomes TRUE,
the program ends.

100 PROGRAM filetran:

110 VAR ch:CHAR;

120 filel, file2:TEXT:

130 BEGIN

140 RESET(filel,'1l.datal’);
150 REWRITE(file2,'2.data2');
160 WHILE NOT EOF(filel) DO

170 BEGIN

180 WHILE NOT EOLN(filel) DO
190 BEGIN

200 READ(filel,ch);

210 WRITE(file2,ch);

220 END; (* while not EOLN *)
230 READLN (filel);

240 WRITELN(file2);

250 END; (* while not EOF *)

260 END. (* filetran *)

The following program requires that the correct code be
entered from the keyboard before the program will run. In
this example, the code 394% must be entered. The code is
entered from the file KEYBOARD and therefore not
displayed. If the correct code is not entered, a programined
HALT occurs. The program prompts to determine whether
the donations made last year to charity are to be printed. The
program then accepts the total amount of money to be
donated to charity and lists the donations to a printer. When
the total has been exceeded, a message is displayed

100 PROGRAM donation;
110 VAR numcomp: INTEGER;

120 cause,code:STRING;

130 totmoney . money ,money |l ef :REAL;

140 fl,fpr:TEXT;

150 ch:CHAR;

160 PROCEDURE getamoun;

170 BEGIN

180 WRITE('Enter recipient: '):

190 READLN (cause) ;

200 WRITE('Enter amount to donate: ').
210 READLN (money) ;

220 END; (* getamount *)

i ‘

|

Chapter 8—File Handling

230 PROCEDURE lastyear;

240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630

640

BEGIN {$w+}
WRITELN(' Load tape: ');
RESET(f1.'1.donate’');
REWRITE(fpr,'20’);
WHILE NOT EOF(fl) DO
BEGIN
READLN(f1,cause) ;
READLN(f1 ,money) ;
WRITE(fpr.cause:25 ,money:14:2);
END;
CLOSE (f1,LOCK) ;
CLOSE (fpr,LOCK) ;
END: (* lastyear *)

BEGIN

numcomp :=1;
WRITE('Enter code: ') {%w—}.
READLN(KEYBOARD, code) ;
JF code<>'394%’
THEN HALT
ELSE
WRITE(Last year''s list? (Y or N)’);
READLN (ch);
IF (ch='y') OR(ch="'Y")
THEN lastyear;
WRITE ('Enter total donation: ');
READLN (totmoney) ;
moneylef:=totmoney;
REWRITE(f1,'1.year');
REWRITE(fpr,'20"):
getamoun;
WHILE moneylef-money>=0.0 DO
BEGIN
WRITELN(fpr,cause:25 money:14:2);
WRITELN(fl,6cause:25);
WRITELN(fl ,money:14:2);
money lef :=moneylef-money;
getamoun,;
numcomp : =numcomp+1 ;
END; (* while money left *)
IF numcomp=1 {$w+}
THEN WRITELN('More than ', totmoney:10:2,
given to 1 cause’)
ELSE WRITELN('Total donation > ',
totmoney:10:2);

650 END. (* donation *)

159

Chapter 8—File Handling

The PAGE
Procedure

I/O Status

160

3
The procedure PAGE is used to write a form feed (page i
advance) character to a file. If the file is the display, the 3
display is cleared and the cursor moved to column 1. The
PAGE procedure is not supported by the PC-324.

In the program below, a line of output is sent to a printer and -
the PAGE procedure then sends a form feed character to the -
device. The printer skips to the start of the next page and
then prints the second line of output.

100 PROGRAM print;

110 VAR f1:TEXT;

120 BEGIN

130 REWRITE(f1,'20');

140 WRITELN(f1l, ' first line');
150 PAGE (f1);

160 WRITELN(fl, 'second line');
170 CLOSE(f1,L0CK) ;

180 END. (* print *)

When an /O error occurs during execution of a Pascal
program, the program is usually aborted. For example, if a
program attempts toread from a mass-storage device and the
correct medium is not loaded, the interpreter aborts the
program. An interpreter option, however, allows you to
check an input/output operation and then take appropriate
action in the program.

Before attempting an input/output operation, you turn off
the automatic input/output check by includinga $ i -
immediately after an opening comment delimiter. For
example, when the interpreter encounters the comment

{$i-}

automatic I/O checking is suspended. To turn the checking
back on, enter the comment

{$i+}
at the point where automatic I/0 checking is to be resumed.

After you have turned the I/0 check off, the program can
check the status of I/0O operations by calling IORESULT. If yot
are reading input from a mass-storage device, you can check
whether the correct medium is loaded with aroutine such as
that shown in the program on the next page.

Chapter 8—File Handling

i
iReview—
iChapter 8

100
110
120
130
140
150
160
170
180
190
200
210

220
230
240
250
260
270
280

PROGRAM iocheck;
CONST badtape=3;
VAR filel :TEXT;
iocode: INTEGER;
a,b,c:REAL;
BEGIN
(*$i- turn off automatic 1/0 checking *)
REPEAT
RESET(filel,'1.data’);
iocode:=10RESULT;
IF iocode=badtape
THEN WRITELN('Load correct tape:
then press ENTER');
{F(iocode<>0) AND(iocode<>badtape)
THEN HALT;
UNTIL iocode=0;
(*$i+ turn on automatic /0 checking *)
READLN(filel,a,b,c);
WRITELN(a:5,b:5,¢:5);
END. (* program iocheck *)

Refer to appendix I in the T/-74 Learn Pascal Reference
Guide for the I/0 status codes returned by IORESULT.

The three predefined INTERACTIVE files are

The maximum length of a record is dependent upon the
being used.

All files in TI-74 Pascal must be organized and accessed

At the end of each record ina TEXT fileisan
marker.

Inthestatement
RESET(filel,'1.comps’);

the file-identifier is
the device-code is

the name of the file on the device is

)
:
;‘"

Chapter 8—File Handling

10.

11.

12.

13.

162

What is the error in the following statements?

150 REWRITE(filel,'7.account');
160 READ(filel,a);

Which option is used with CLOSE to ensure that a file is
alwayssaved when it is closed?

For an INTERACTIVE file, the EOLN is true when

The EOF function is true on a TEXT file when

Write a program that displays a multiplication table of the
integers from 1 through 12. Use a procedure to display
lines between the rows of values and at the top and
bottom.

Write a program that prints the characters corresponding
to ASCII codes 31 through 127 to the printer whose device
code is 20.

Write a program that reads a TEXT file stored on device 7
and prints the data on device 20. The printed data should
be double-spaced.

Use the program in 12 and modify it so that if an asterisk is
read, the printer sends a form feed character.

Answer Key

This answer key contains the answers to the questionsin the
Reviewsat the ends of chapters 2 through 9.

Chapter 2 1. run ‘“pascal”
2. bye
3. line number
4. characterstring
5. apostrophes
6. period afterthe word END
7. DEL
8. SAVE

9. SAVE "'1.myprog" should be written with apostrophes as
SAVE 'l.myprog’

10. OLD ’'7.myprog’

Chapter 3 1. program heading
program block
2. BEGIN
END

3. statements
4. define

5. LABEL .
CONST
TYPE
VAR
PROCEDURE/FUNCTION

6. identifier

7. measure
account!
(Spercent does not begin with a letter)
(printheaderis truncated to 8 characters)
(ENDisareserved word)
(sales-tx contains a character other than a letter or a digit)

163

Answer Key

8. numeric
character
string
Boolean

9. REAL

10. 32767 - 32767

11. two apostrophes

12. The opening comment delimiter (* has a space between
the two characters.

13. NUM
REN

14. 80
15. No semicolon between the two WRITELN .

16.(* %)
{ }

17. Turns off the wait option
18. The answer is 10

The answer is
10

19. 100 PROGRAM ex19;
110 BEGIN
120 WRITELN('545 is ' ,5+5):
130 END. (* ex19 *)

2(). 100 PROGRAM ex20;
110 BEGIN
120 WRITELN('***The results are listed below***");
130 WRITELN(' x=5');
140 WRITELN(' y=10");
150 END. (* ex20 *)

21. END
HALT
EXIT

22. semicolon

164

inswer Key

“hapter 4

23. NoBEGIN

No period after END

CONST
TYPE
VAR

CHAR
INTEGER
STRING
REAL
BOOLEAN

7.567 E0O1 nospaceallowed
b ~ nodigit to the left of the decimal point
12, no digit to the right of the decimal point

10
10

a 1234
b 355
¢,

d theend
83.545
-83.5
—83.55
~83.5450
—-83.545
-83.545
-83.545
83.545

8 INTEGER
2.5 REAL

5 INTEGER
TRUE BOOLEAN
16.5 REAL

TRUE BOOLEAN
1 INTEGER
FALSE BOOLEAN

100 PROGRAM example8;

110 VAR st:STRING;

120 BEGIN

130 WRITE('String: ') {$w-};

140 READLN(st);

150 WRITELN('String length is ',
LENGTH(st)) {3Sw+};

160 WRITELN(SCAN(LENGTH(st) ,="2",s1));

170 END. (* example8 *)

}?'
|
|

Answer Key

9. 100 PROGRAM example9;
110 VAR stl,st2:STRING;
120 BEGIN

130
140
150
160
170
180
190
200

210

220 END. (* example9 *)

WRITE('Stringl: ') {$w-}.
READLN(stl):
WRITE('String2: ');
READLN(st2); {$w+}

IF POS(stl,st2) <>0 '
THEN WRITELN('Stringl in String2 at ', POS(stl,st2))
ELSE |IF POS(st2,stl) <>0
THEN WRITELN('String2 in Stringl at

,POS(st2,stl))
ELSE WRITELN('No substrings exist -POS = 0');

10. 100 PROGRAM ex10;
110 VAR code: INTEGER;

120 ch:CHAR;

130 BEGIN

140 WRITE('Enter integer: ') {$w-};

150 READLN (code) ;

160 WRITE('Enter character: '):

170 READLN(ch); {$w+}

180 WRITELN('Predecessor of ' ,code.' = ' PRED(code));

190 WRITELN(Successor of ',code,’ = ', ,SUCC(code));

200 WRITELN('Predecessor of ',ch,’ = ' PRED(ch)); ;
210 WRITELN(’Successor of ',ch,' = ',SUCC(ch)); i

220 END. (* ex10 *)

Chapter 5

166

11. 100 PROGRAM exl11;
110 VAR celsius:REAL;
120 BEGIN
130 WRITE('Enter deg C: ') {$w-};
140 READLN(celsius) {$w+};
150 WRITELN(celsius,’ deg C. = ',
160 celsius*9/5+32," deg F.')
170 END. (* exll *)

1. FOR
WHILE
REPEAT

2. IF
CASE

3. true

S AT R T R e

Answer Key

4. true

6. 100 PROGRAM examplie5;
110 VAR count, index, least,greatest: INTEGER;
120 weight,total,average: INTEGER;
130 BEGIN
140 least :=MAXINT;
150 greatest:=0;
160 total :=0;

170 REPEAT
180 WRITE(' Enter # in group: ') {$w-};
190 READLN(count) ;

200 UNTIL count>0;
210 FOR index:=1 TO count DO

220 BEGIN
230 WRITE(' Weight #',index,' : ");
240 READLN (weight) ;
250 IF weight<least
THEN least:= weight;
260 IF weight>greatest
THEN greatest:=weight;
270 total :=total+weight;
280 END; {Sw+}
290 WRITELN('Least weight is: ', least);
300 WRITELN(Greatest weight is: ',

greatest);

310 WRITELN(’ Average weight is: ',
total/count);

320 END. (* examplie5 *)

100 PROGRAM exampleb6;

110 VAR count, least,greatest: INTEGER;

120 weight,total,average: INTEGER;

130 BEGIN

140 least :=MAXINT;

150 greatest:=0;

160 total :=0;

170 count:=1;

180 WRITELN('Enter weights, enter 0 to stop');

190 WRITE('Weight #',count,’: ') {$w-};

200 READLN (weight)

210 REPEAT

220 IF weight<least THEN least:=weight;

230 IF weight>greatest THEN greatest:=weight;
240 total :=total+weight;

250 count:=count+l;

260 WRITE('Weight #' ,count,’': ');

270 READLN(weight) ;

Answer Key

280 UNTIL weight=0; {S$w+}
290 WRITELN(' Least weight is: ', least);
300 WRITELN('Greatest weight is: ',6greatest);
310 WRITELN('Average weight is: ',total/count-1);
320 END. (* example6 *)
7. 100 PROGRAM example7;
110 VAR count,least,greatest: INTEGER;
120 weight,total,6average: INTEGER;
130 BEGIN
140 least :=MAXINT;
150 greatest:=0;
160 total :=0;
170 count:=1;
180 WRITELN('Enter weights, neg. # to stop');
190 WRITE('Weight #' ,count,': ") {3$w-};
200 READLN(weight) ;
210 WHILE weight>0 DO
220 BEGIN
230 IF weight<least THEN least:=weight;
240 IF weight>greatest THEN greatest:=weight;
250 total :=total+weight;
260 count:=count+l;
270 WRITE('Weight #' ,count,': ');
280 READLN (weight) ;
290 END; {%w+}
300 WRITELN('Least weight 1s: ', least);
310 WRITELN('Greatest weight is: ', greatest);
320 WRITELN(Average weight is: ',total/count-1);

330 END. (* example7 *)

168

8. semicolon before ELSE

9. 100 PROGRAM example9;
110 LABEL 9999;
120 VAR count, index: INTEGER;
130 BEGIN

140 WRITELN('Enter 12 integers (1-12):

150 FOR index:=1 TO 12 DO

)

160 BEGIN

170 WRITE('# ,index, " : ") {$w-}:
180 READLN(count); {%w+}

190 IF(count<l) OR (count>12)

200 THEN ’

210 BEGIN

220 WRITELN(Invalid entry');
230 GOTO 9999;

240 END;

1

Answer Key
250 CASE count OF
260 1:WRITELN('January');
; 270 2:WRITELN(February');
| 280 3:WRITELN(March’);
- 290 4 -WRITELN(' April’);
{ 300 5:WRITELN(May ") ;
[310 6 :WRITELN(' June’);
| 320 7 WRITELN(" July');
| 330 8 :WRITELN(August’);
| 340 9:WRITELN("September’)
;_ 350 10:WRITELN('October ') ;
P 360 11 :WRITELN(November');
t 370 12 :WRITELN(' December '} ;
380 END; (* case *)
390 END; (* FOR-loop *)
400 9999 :WRITELN('Finished');
410 END. (* example9 *)
: Chapter 6 1. INTEGER
CHAR
‘ 2. CHAR
: INTEGER
£
g 3. None—atypedeclaration definesthe identifier sales as
¢ anarray type. A VAR declaration is used to allocate
‘ storage for arrays.
5
5 4. 100 PROGRAM inout;
4 110 VAR ch:ARRAY[1..80] OF CHAR;
3 120 count, index: INTEGER;
: 130 BEGIN
1 140 index:=0;
: 150 WRITE(Enter word: ') {$w-};

160 REPEAT

170 index:=index+1;

180 READ(ch[index]) ;

190 UNTIL ch[index]=" ";

200 FOR count:=index—1 DOWNTO 1 DO
210 WRITE(ch[count]):

220 {$w+} WRITELN;

230 END. (* inout *)

5. 100 PROGRAM example5;

110 CONST maxnum=15;

120 TYPE intarray=ARRAY[1. maxnum] OF INTEGER;
130 VAR sort:intarray:

169

‘ Answer Key

140 index, fixed,temp: INTEGER;

150 BEGIN

160 FOR index:=1 TO maxnum DO

170 BEGIN {%w-}

180 WRITE(Enter integer #', index,’ : ');
190 READLN(sort[index]);

200 + END; {$w+}

210 FOR fixed:=2 TO maxnum DO

220 BEGIN

230 FOR index:=maxnum DOWNTO fixed DO
240 BEGIN

250 |IF sort[index]>sort[index-1]

260 THEN

270 BEGIN

280 temp:=sort[index-1];

290 sort[index-1]:=sort[index];
300 sort[index]:=temp;

310 END; (* swap adjacent elements)
320 END; (* one pass through array *)
330 END; (* all elements are sorted *)

340 WRITELN('Descending order of integers: ');
350 FOR index:=1 TO maxnum DO

360 WRITELN(' ' Integer #' ,index, ' : ',sort[index]);
370 END. (* exampleb5 *)

6. wvalid
valid
invalid—a string variable cannot be assigned to a packed
array of char.
invalid—a string variable cannot be assigned to a packed
array of char.
invalid—the string constant is too long to be assigned to
the array.
valid
invalid—the two arrays are not the same length.
invalid—the two arraysare not the same length.
valid
invalid—illegal number of subscripts with array pac4.

Chapter 7 1. statements
declarations

2. procedure call

3. 100 PROGRAM example3;
110 PROCEDURE concept:
120 BEGIN
130 WRITELN(' * * * Concept * * * *');

170

i Answer Key

TR TE

i

Chapter 8

R R

R

T

i |

140 WRITELN;

150 WRITELN(’ =)

160 WRITELN(' #).
170 WRITELN(' *)
180 WRITELN;

190 END; (* procedure concept *)

200 PROCEDURE sum;
210 BEGIN

220 WRITELN(* *
230 WRITELN('
240 WRITELN('
250 WRITELN(®
260 WRITELN;

270 END; (* procedure concept *)
280 BEGIN (* program body *)

290 concept;

300 sum;

310 concept;

320 sum;

330 END. (* example3 *)

® om0y

“* Summation *
!0!').
\'4=kl¥')-

:kl:(x,\)::x;(xx:;‘!).
'

No, the procedure ex1 uses the local variable dup i icat.
INPUT

KEYBOARD

OuTPUT

device

sequentially

end-of-line

filel

1

comps

The READin line 160 is attempting to read from a file
opened for output. '

LOCK
the last character read was the end-of-line marker.

the next character to be read is the end-of-file marker.

171

Answer Key

10. 100 PROGRAM table:
110 VAR countl,count2: INTEGER;

120 pr . TEXT;

130 PROCEDURE | ines;

140 BEGIN

150 WRITELN(pr, "= ————— e e

160 END; (* lines *)

170 BEGIN

180 REWRITE(pr.’'50")

190 WRITELN(pr);

200 WRITELN(pr, 'Multiplication table for integers: 1

to 12':46);
210 lines;
220 WRITELN(pr) ;
230 WRITE(pr. ').
240 FOR countl:=1 TO 12 DO
250 WRITE(pr.,countl:4):
260 WRITELN(pr) ;
270 lines;
280 FOR countl:=1 TO 12 DO
290 BEGIN
300 WRITE(pr.countl:2);
310 FOR count2:=1 TO 12 DO
320 WRITE(pr,countl*count2:4);
330 WRITELN(pr) ;
340 lines;
350 END; (* countl all rows *)
360 lines;

370 END. (* table *)

11. 100 PROGRAM exl1;
110 VAR index: INTEGER;
120 pr:TEXT;
130 BEGIN
140 REWRITE(pr,'20");
150 FOR index:=31 TO 127 DO
160 WRITELN(pr ,CHR(index));
170 END. (* exll *)

12. 100 PROGRAM ex12:
110 VAR filein,pr:TEXT;
120 st:STRING;
130 BEGIN
140 RESET (filein, ' 7.filel0");
150 REWRITE(pr,'20"); -

172

]

|

i Answer Key
%

4

160 WHILE NOT EOF(filein) DO

, 170 BEGIN
; 180 READLN(filein,st);
! 190 WRITELN(pr,st);
' 200 WRITELN(pr) ;

210 END;

220 END. (* exl12 *)

13. 100 PROGRAM ex13;
110 VAR filein, pr:TEXT;
120 ch:CHAR;
130 BEGIN
140 RESET(filein,'7 . filelQ'):
150 REWRITE(pr, '20");
160 WHILE NOT EOF(filein) DO

170 BEGIN
180 READ(filein, ch);
190 IF ch="*"
200 THEN PAGE (pr) ;
210 WRITE (pr,ch);
220 IF EOLN(filein)
230 THEN

3 240 BEGIN

ﬁ 250 READLN(filein):
260 WRITELN(pr) :
270 WRITELN(pr) ;
280 END: (* EOL and blank line *)
290 END; (* end-of-file *)

300 END. (* exl13 *)

Index

A
ABS—64, 69
Absolute value—64, 69
Actual parameter—131, 136
Algorithm—17
Allocation of memory—136, 139
AND—58, 60,61, 95
Apostrophe—21,27, 40
Argument—64
Arithmetic operators—50, 51, 53
Array—103
declaration—103, 107
parameters—138, 139
procedures—146
of arrays—110
of characters—115
type—107, 138
ASCII-55, 56, 153
Assignment
operator—42
statements—42, 43
ATAN—-T0
Automatic Power Down™—10

B
Base type—107
BASIC command level—9, 10
BEGIN—19, 23, 87, 92, 93, 99, 121, 123,
125
Binary operator—51, 54
Blocks—122
BOLDFACE—19
Boolean
constant—21
functions—73
operators—57
Boolean-expression—86, 87, 91, 95, 96
BOOLEAN type—42
Brackets—10, 41, 103
BREAK—S8, 32
Breakpoint—32, 33
BYE—10

C

CASE—91, 97,99

CHAR—38, 46

Character
array—116

174

constant—21
function—71
operators—>55
CHARtype—40,41, 103
Check input/output—26, 160
CHR—-71
CLOSE—154, 156
Closinga file—156
CLR—8, 13, 14,32
Column—78
Command—18
Comments—25, 26
Compiler—17
Compound statement—83, 87
CON—32
CONCAT—-72
Conditional branch statements—82, 91
CONST-19, 36,41
Constant—20, 21, 36
Constant declarations—36
CONTINUE—32
Control
statements—82
variable—83, 84, 86
COPY—T72
COS—-70
Counter—84
CTL—13
Cursor—28,47,78, 152, 158

D
Data
format—76, 153
records—153
Debugging a program—32
Decimal notation—75
Declarations—18, 19
order—19
Default options—27
DEL—14, 154
DELETE—144, 145
Deleting a file— 154, 155
Delimeter—20
Device number—152
DIV-51, 60
DOWNTO—84, 86
Dynamiclength—41

Index

E
Editing program lines—12, 13
Elements—103, 107, 138
ELSE—91, 92,93
Empty string—41
END—19, 23, 29
End-of-file marker— 154, 155, 156
End-of-line
character—47, 154, 156
condition—158
marker—153, 154, 155, 156, 158
Endinga procedure or function—126
ENTER-11, 28, 32
EOF-73, 156
EOLN—73, 156
Equal to—52, 55, 57, 58
Equality—57
testing for—63
Error
codes—31
handling—30, 31
Errors—12
EXIT—30
Execution—11
errors—30
of astored program—15
EXP-70
Exponent—39, 40, 75
Expression—36, 62

F
Factorial—147, 148
FALSE—42,52,57,73
Field-width specification—74, 75,
76,78
File
declaration—154
handling—152
type—152)
File-identifier— 155, 156, 157
File-processing keywords— 154
FILLCHAR—144, 146, 147
Flow of control—82
FN—10
FOR—-83, 85,89, 105,112,118
Form feed—160
Formal parameters— 129

FORMAT-—153
Formatted data—74, 76
FORWARD—143
FUNCTION—19
Function—64, 121, 122, 129
block—125
body—125
call—132, 143
declarations—125
heading—125

G
Global—138
identifiers—132
GOTO-—100, 101, 126
GOTOXY—78
Greater than—52, 55,57, 58
Greater than or equal—52, 55,57, 58

H

HALT-29, 30, 126, 158
High-level languages—17
Histogram—112

I
i(input/output check)—26, 27, 160
Identifier—20, 131, 143
IF-91, 92, 93
[mperative—30, 64, 66
IN—53, 58
Indentation—23, 24
Index—103
Indextype—104
Indexing—41
[nitializing
a mass-storage medium—153
the Pascal system—10
INPUT—152, 157
[nput—18
buffer—47, 48, 153
statements—44, 48, 152, 155, 156
INSERT—144, 145
Installing a cartridge—9
INTEGER—38
Integer functions—64
Integer operators—50, 51
Integer-to-real conversion—39, 44
INTEGER type—38, 46, 103

175

INTERACTIVE—152, 157
Interpreter—17, 24, 25, 103, 129, 136,
152,156, 157

Interpreter options—25, 26, 27
Intrinsic procedures—144
1/0

STATUS—160

display indicator—152
IORESULT-—26, 27, 160, 161
Italics—21

K
KEYBOARD-152, 158
Keywords—10, 20

L
LABEL—-19, 100
Leading blanks—45
LENGTH—68
Length of strings—40, 41
Lessthan—52, 55, 57, 58
Lessthan or equal—52, 55, 57, 58
Lexicographical—56
Line
length—24
numbering—22
renumbering—23
LIST—10, 152
Listing a program—11
LN—70
LOCK—156
LOG-70
Logical operators—50, 53, 56, 57, 58
Loop—82, 89
Loop control—85
Lowercase characters—20, 56

M

Magnitude—39, 45, 46
Mantissa—39, 75
Maximum field width—78
Maximum length—40, 153
MAXINT-21, 38
MEMAVAIL—66, 68, 145
Memory functions—65, 66
MOD-51, 60
MOVELEFT—144, 146, 147
MOVERIGHT—144, 146, 147

176

Multi-type functions—73
Multiple-line statements—24
Multiple-statement lines—24

N
Nested

IF—93

loops—89, 112
NEW-—11, 15
NEW ALL—11, 15
NOT—58, 60
Not equal to—52, 55, 57, 58 .
Null string—41
NUM—22
Numeric constants—21
Numeric functions—64
Numerical accuracy—63

(0]
ODD—73
OLD—15, 152
One-dimensional—105
Opening a file—154
Operator precedence—60
Operators—50
OR—58, 60, 95
ORD—69
Order of precedence—95
Ordinal—63, 97
OUTPUT—-152
Output—18
buffer—153
statements—18, 27, 28, 152
Overlay—10

P

PACKED ARRAY OF CHAR—115
Packed arrays—115

PAGE—160

Page advance—160
Parameters—129, 135, 136, 138, 143
Parentheses—44, 61, 62

Pascal System Initialized—10, 11
Pass by reference— 136
Peripheral device—152, 153
POS—68

Positioning the cursor—78
Precedence, operator—60

Index

Procedure—121, 122, 129
block—122, 143
body—122
call—123, 132, 143
declarations—122, 123
heading—122, 123

PRED—73

PROCEDURE—19

PROGRAM—23

Program
block—18, 19, 121
body—19, 121, 123, 129
divisions of — 18
execution—15, 123
heading—18
identifier—18
lines—12, 22
storage—12

Prompts—49

PROTECTED—15

Punctuation—24

PURGE—156

PWROFTEN—-70

]

R

Ranking functions—64, 69

READ—44,47, 48, 153, 157

READLN—44,47, 48, 153, 157

RUN command—11, 32

Real
functions—69
numbers—21
operators—53

* REALtype—39, 46

* Record—153

* Recordlength—i53

? Recursion—147
Reference—138

T e T

TR

Relational operators—50, 52, 54, 55, 56,

‘ 57,117
Renumbering program lines—23
I. REPEAT-—83, 86, 87, 88, 149
' Repetition statements—82
- Reposition a file—155
Reserved symbols—21, 22
Reserved words—20
. RESET—154, 155
|- REWRITE—154, 155
|
i
|

Right-justified—75
ROUND—64

Rounding values—75, 76
Row—78

RUN—10

run ‘‘pascal’”’—10
Runninga program—11, 15

S
SAVE—15, 152
SCAN—66
Scientific notation—39, 45, 46, 74
Semicolon—24, 84,91, 123, 125
Sequential access— 153
Set membership—52
SIN—-70
SIZEOF—66
SQR—64, 70
SQRT—70
Statements—18, 19
Statements on multiple lines—24
Stepwise refinement—17, 121
STR—144, 145
STRING—37, 46,115
String
constant—21
functions—64, 68, 72
operators—56
procedures—144
STRING type—40
Structured programming—17, 101
Subscript—103, 104
SUCC—73
Syntax, Pascal—20
Syntax errors—17

T

Terminating program execution—29
Terminatjon of recursive routines— 147

Terms—62
TEXT file—154, 157

Three-dimensional arrays—112, 118

TO—84, 86

Top-down design—17, 121
TRUE—42,52,57,73
TRUNC—64

Truncation—63

Two-character symbols—21, 22

Two-dimensional arrays—109, 118
TYPE declarations—19, 74, 107, 109

U
UCSD Pascal—7
Unary operators—50, 54
UNBREAK—33
Unconditional branch statements—82,
100
Unformatted data—74
UNTIL—86
Uppercase characters—20, 56
User-defined
functions—135
identifiers—20
procedures—135
type—74

A\’

Value parameter—136, 138

VAR declaration—37, 74, 107, 109, 129

VAR parameter—129, 132, 136, 137,
138

Variable declarations—37 .

Variables—36

VERIFY—15

w

w (wait)—26, 27
Wait—26, 27
Warnings—31
WHILE—83, 87, 88
Width—75
WRITE—28, 153
WRITELN--28, 76, 153
Writing a program—11

178

*ip
TexAas
INSTRUMENTS

Printed In Taiwan ROC 1060293-0101

	Learn Pascal User's Guide_1
	p0004
	p0005
	p0006
	p0007
	p0008
	p0009
	p0010
	p0011
	p0012
	p0013
	p0014
	p0015
	p0016
	p0017
	p0018
	p0019
	p0020
	p0021
	p0022
	p0023
	p0024
	p0025
	p0026

	Learn Pascal User's Guide_2
	q0001
	q0002
	q0003
	q0004
	q0005
	q0006
	q0007
	q0008
	q0009
	r0001
	r0002
	r0003
	r0004
	r0005
	r0006
	r0007
	r0008
	r0009
	r0010
	r0011
	r0012
	r0013
	r0014
	r0015
	r0016
	r0017
	r0018
	r0019
	r0020
	r0021
	r0022
	r0023
	r0024
	r0025
	r0026
	r0027
	r0028
	r0029
	r0030
	r0031
	r0032
	r0033
	r0034
	r0035
	r0036
	r0037
	r0038
	r0039
	r0040
	r0041
	r0042
	r0043
	r0044
	r0045
	r0046
	r0047
	r0048
	r0049
	r0050
	r0051
	r0052
	r0053
	r0054
	r0055
	r0056
	r0057
	r0058
	r0059
	r0060
	r0061
	r0062
	r0063
	r0064
	r0065
	r0066
	r0067
	r0068
	r0069
	r0070
	r0071
	r0072
	r0073
	r0074
	r0075
	r0076
	r0077
	r0078
	r0079
	r0080
	r0081
	r0082
	r0083
	r0084
	r0085
	r0086
	r0087
	r0088
	r0089
	r0090
	r0091
	r0092
	r0093
	r0094
	r0095
	r0096
	r0097
	r0098
	r0099
	r0100
	r0101
	r0102
	r0103
	r0104
	r0105
	r0106
	r0107
	r0108
	r0109
	r0110
	r0111
	r0112
	r0113
	r0114
	r0115
	r0116
	r0117
	r0118
	r0119
	r0120
	r0121
	r0122
	r0123
	r0124
	r0125
	r0126
	r0127
	r0128
	r0129
	r0130
	r0131
	r0132
	r0133
	r0134
	r0135
	r0136
	r0137
	r0138
	r0139
	r0140
	r0141
	r0142
	r0143
	r0144
	r0145
	r0146
	r0147
	r0148
	r0149
	r0150

