HP-29C Quick Reference

© A. Thimet

Memory

| Permanent memory | • 16 storage registers
| | • X register
| | • 98 program steps
| | • Display format
| Volatile memory | • 14 storage registers
| | • Y, Z, T and Last-X registers
| | • Trigonometric mode
| | • Program counter

Storage

| STO 0-9, .0-.5, i | Save data in one of the 16 permanent storage registers
| STO ÷x 0-9, .0-.5, i | Register storage arithmetic: Register OP X → Register
| RCL 0-9, .0-.5, i | Retrieve data from one of the 15 permanent storage registers
| Indirect addressing | • Volatile registers 16-29 can only be accessed via indirect addressing
| | • R0 contains the index. Only the integer part of the absolute value of R0 will be used
| | • Note that registers .0-.9 correspond to R0=10-15
| | • Press "STO i" or "RCL i" for indirect operations. i is located on the R↓ key and need not be prefixed
| CLEAR REG | Clears all registers 0-29

Miscellaneous

| FIX n | Select fixed point format with n digits after the decimal point
| SCI n | Select exponential format with n valid digits
| ENG n | Select exponential format where the exponent is always a multiple of 3. Note that with n=0 & 1 routing can occur in front of the decimal point!
| DEG | Trigonometric mode degrees (360, default)
| RAD | Trigonometric mode radians (2π)
| GRD | Trigonometric mode grad (400)
| y^x | Y to the power of X. Y may be negative if X is integer
| → H | Convert h.mmss to fractional hours
| → H.MS | Convert fractional hours to h.mmss format
| → R | Convert polar coordinates (X=r, Y=θ) to orthogonal coordinates
| → P | Convert orthogonal coordinates to polar coordinates (X=r, Y=θ)
| % | Calculate X percent of Y. The stack doesn't drop!

1
Summation

Memory
6 summation registers mapped to the top non-volatile storage registers:
\[n=R.0 \quad \Sigma x=R.1 \quad \Sigma x^2=R.2 \quad \Sigma y=R.3 \quad \Sigma y^2=R.4 \quad \Sigma xy=R.5 \]

CLEAR Σ
Clear summation registers

Σ+
Add X & Y to the sum registers and increment n

Σ-
Subtract X & Y from the sum registers and decrement n

x
Calculate mean of X & Y values and put result in X & Y register

s
Calculate standard deviation of X & Y values and put result in X & Y register:

\[sx=\sqrt{\frac{n\sum x^2-(\sum x)^2}{n(n-1)}} \] and similar for sy

Programming

Memory
98 fully merged program steps
Program does not halt when it encounters step 00!

PRGM/RUN
Use this switch to select programming or execution mode

CLEAR PRGM
RUN mode: Does nothing
PRGM mode: Clear all program memory (fills with R/S instructions)

Program editing
- New instructions will be inserted after the currently displayed line
- DEL deletes the currently displayed instruction and displays the previous line

SST & BST
(RUN mode)
SST: Execute program step-by-step. While the key is held down the next instruction is displayed. When the key is released the instruction is executed
BST: Same as SST except that no instructions are executed

SST & BST
(PRGM mode)
Step forward/backward thru program instructions

LBL 0-9
Insert label. The same label can be used multiple times. Labels will be search from the current program counter towards the end of the program memory

GTO . nn
RUN or PRGM mode: Jump to line number nn

GTO 0-9
RUN mode: Set program counter to specified label 0-9
PRGM mode: Insert jump instruction to label 0-9

GTO i
RUN mode: Set program counter indirectly via R0
PRGM mode: Insert indirect jump instruction via R0
Only the integer part of R0 will be used:
- R0=0..9: Jump to the specified label
- R0<0: Jump back the given number of instructions in program memory

GSB 0-9, i
RUN mode: Execute program on specified label 0-9 or indirectly via R0
PRGM mode: Insert subroutine call to label 0-9 or indirect call via R0.
At most 3 subroutine calls are possible

RTN
RUN mode: Set program counter to 00
PRGM mode: Insert return from subroutine instruction. At the top level this will halt the program and the program counter will point to the instruction after the RTN

PAUSE
Halt program for about 1 sec and display X register
HP-29C

<table>
<thead>
<tr>
<th>R/S</th>
<th>RUN mode: Halt program. Note that in order to stop a program during a PAUSE you must hold the R/S key down until the pause is over!</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PRGM mode: Insert halt instruction</td>
</tr>
<tr>
<td>DSZ</td>
<td>Decrements R0 and if the integer part of the result is 0 skips the next program instruction</td>
</tr>
<tr>
<td>ISZ</td>
<td>Increments R0 and if the integer part of the result is 0 skips the next program instruction</td>
</tr>
</tbody>
</table>
| Comparisn | These relational operators are available:
X<0 X≥0 X≠0 X=0
X<Y X≥Y X≠Y X=Y
If the relation is true the next program step is executed.
If the relation is not true the next program step is skipped. |